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CHAPTER 1

Introduction

“Science advances by playing twenty questions with
nature. The proper tactic is to frame a general ques-
tion, hopefully binary, that can be attacked exper-
imentally. Having settled that bits-worth, one can
proceed to the next. The policy appears optimal —
one never risks much, there is feedback from na-
ture at every step, and progress is inevitable. Un-
fortunately, the questions never seem to be really
answered, the strategy does not seem to work”

— Allen Newell (1973)

Almost fifty years ago, the artificial intelligence pioneer and
cognitive psychologist Allen Newell summarized his discontent
with the field of psychology with the sentence “you cannot play
twenty questions with nature and win”. In a game of “twenty
questions”, one player thinks of a person or object and the other
player attempts to guess it by asking up to twenty questions,
such as “is it a person?”, “is he a man?”. Only questions that re-
quire a binary (yes/no) answer are allowed. Newell argued that
most (cognitive) psychology research attempts to understand
human behavior and cognition in a manner analogous to a game
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of twenty questions; that is, by repeatedly asking and trying to
answer “binary” research questions — such as “Does cognition
impact perception?” and “Are emotional facial expressions in-
nate?” — researchers attempt to gradually explore and reduce
the space of possible scientific explanations in the hope to, ulti-
mately, converge on the “the right answer”. Almost fifty years af-
ter Newell’s twenty questions article, most of the research in both
psychology and cognitive neuroscience still revolves around ask-
ing binary research questions about the mind and brain, framed
as hypotheses that are evaluated using an ever increasingly so-
phisticated toolbox of statistical significance tests. Newell, how-
ever, believed that in order to gain a fundamental understanding
of how the mind and brain work, we need to go beyond asking
binary questions and try to investigate human behavior and cog-
nition in all its complexity using quantitative, predictive models
that implement human cognitive capacities and behaviors. I be-
lieve that this argument is still as relevant today as it was almost
fifty years ago.

In this thesis, I explore a different, complementary approach
to the traditional methodology of hypothesis testing used in psy-
chology and cognitive neuroscience research. Although this al-
ternative approach has deep roots in psychology and is thus by
no means new, the version I advocate and have used in this the-
sis extends it with ideas and techniques from the rapidly growing
field of artificial intelligence and specifically machine learning.
As I will describe in more detail in the next section, the crucial
difference between the “hypothesis testing approach” and the
“predictive approach’, as advocated by Newell, is the way they
go about trying to explain and understand a particular cogni-
tive capacity or behavior (Breiman, 2001). Although I believe
that both approaches have their merits, I think that the predic-
tive approach may be particularly promising given the increas-
ing availability of large datasets and rapid advances in artificial
intelligence and machine learning (Halevy et al., 2009; Yarkoni
& Westfall, 2017).



1.1. Inference done differently

This thesis features research that applies, adapts, and con-
tributes to machine learning techniques and methods in the con-
text of predictive models of behavior and neuroimaging data.
Specifically, chapters in this thesis describe both examples of
predictive models applied to neuroimaging data (chapter 2) and
behavior (chapter 6 and 7 as well as elements that facilitate and
enrich the predictive modelling framework, such as the value of
making datasets publicly accessible (chapter 4; Adjerid & Kelley,
2018; Poldrack & Gorgolewski, 2014), and a method to aid inter-
pretation of predictive models (chapter 3). Note that the studies
contained in this thesis do not all fall squarely in the predictive
approach. For example, chapter 5 features a study that revolved
around a confirmatory (and preregistered) hypothesis and chap-
ter 2 describes a study that in fact tests a very specific hypoth-
esis using a predictive model. In what follows, I will argue that
the predictive approach represents a useful and promising way
of doing research that complements the traditional hypothesis
testing approach with respect to their common goal of explana-
tion and gaining understanding of the brain and mind. But first,
I will illustrate that these two approaches can be thought of as
different inferences from the same model which helps to iden-
tify their relative (dis)advantages later.

1.1 Inference done differently

Both hypothesis testing and predictive modelling are scientific
methods used in psychology and neuroscience to gain under-
standing of human cognition and behavior. Both approaches
share an important common component: a statistical model
(Breiman, 2001). Although there are many different definitions
and interpretations of the term “model” (Kellen, 2019), in this
chapter, I define a statistical model as a quantitative representa-
tion of (a part of) a target system (Frigg & Hartmann, 2020). In
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psychology and cognitive neuroscience, a target system may re-
fer to a specific cognitive capacity (e.g., emotion recognition) or
behavior (e.g., instrumental learning; Cummins, 2000; Rooij &
Baggio, 2021). Models are used to create a quantitative descrip-
tion, or hypothesis, of how data within a target system may have
been generated. Specifically, statistical models describe how one
quantity of interest within the target system, y (the “target vari-
able”), may arise as a function (f) of one or more other quantities
in the target system, X (the predictor variables or features), often
in the presence of noise (¢):

y=fX)+e (1.1)

Put differently, models represent explanations of how vari-
ability in a particular aspect of the target system (y) arises as
the result of a set of (causally related) features (Cummins, 2000;
Kay, 2017). For example, chapter 6 and 7 describe models that
attempt to explain the emotion people see in others’ facial ex-
pressions (y) as a function of a combination of facial movements

(Ximov):

emotion = (X)) + € (1.2)

In principle, the function linking the predictors to the tar-
get can be any function that maps a vector of numbers (the pre-
dictors, X;) to a single number (the target value, y;), but almost
all statistical tests as well as most predictive models in psychol-
ogy and cognitive neuroscience use a variant of the general(ized)
linear model (GLM; Ivanova et al., 2021; Lindelov, 2019). A lin-
ear model assumes that the target variable (which we assume to
be continuous for now) can be expressed as the sum of a set of
features (X;, X5, . . ., Xp) weighted by a corresponding set of pa-
rameters (B, 3,, ..., Bp). When the target variable is continu-
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ous, the corresponding linear model is more commonly known
as a linear regression model':

fIX) =D _ X, (1.3)
j=1

In linear models, like the linear regression model above,
the parameters quantify the strength of the association between
each predictor and the target variable. Model parameters are
considered unknown and need to be estimated from data. Here,
“data” refers to a specific number of observations of the target
variable (y) and the predictor variables (X). There are various
mathematical techniques to estimate the model parameters, in-
cluding the well-known (ordinary) least squares analytical solu-
tion, iterative gradient-based methods, regularized least squares,
and Bayesian parameter inference. These methods differ in how
they estimate the parameters (or, in more technical terms, which
particular function they optimize or minimize during estima-
tion), but they all return an estimate of the parameters of the
model. These estimated parameters are often denoted with a
“hat” (% i.e., B) to distinguish them from the true, but unknown,
parameters (i.e., 8).

After obtaining estimates of the model parameters, the
model can be used to make predictions about the value of the
target variable (y) given observations of the predictor variables
(X):

P
j=1

'In this chapter, we assume for simplicity that the target variable, y, is
continuous. The target variable, however, does not need to be continuous;
in that case, linear models from the GLM additionally include an “inverse
link function”, g™, that maps the linear combination of features to the right

domain: y = g~ 1(XB).
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Like the “hat” is used to distinguish estimated from true pa-
rameters, the “hat” used in the equation above is used to distin-
guish a prediction (i.e., an estimate of the target variable, y) from
the true target value (y). The model predictions can be compared
to the actual target values to evaluate the model’s predictive ac-
curacy (which is alternatively called “model fit” or simply “ac-
curacy”), which is usually summarized in a single number using
metrics such as R* (also more colloquially known as “explained
variance”).

Thus far, the specification of a (linear) model and the es-
timation of its parameters is common to both the traditional
and the predictive approach. The crucial difference between the
two approaches, at this point, is what element they treat as un-
known and perform inference on. In the hypothesis testing ap-
proach, inference is performed on the estimated model parame-
ters while in the predictive approach, inference is performed on
the model’s predictive accuracy (Bzdok, 2017).

This difference in their focus of inference is associated with
different cultures of research which use statistical models to
explain a target system in different ways (Breiman, 2001). In
the traditional hypothesis testing approach, the inferences about
model parameters are not meant to directly explain (parts of) a
target system. Instead, the target system is verbally described
and explained by a theory (Kellen, 2019). Explanation of the sys-
tem occurs via testing hypotheses about very specific aspects of
the system that are implied by a theory, often in strictly confir-
matory experiments (Wagenmakers et al., 2012). Because such
hypothesis-driven studies often use strictly controlled experi-
ments in which the factor(s) of interest are explicitly manipu-
lated, these studies afford causal interpretation of the observed
statistical effects (Groot, 1961). For example, if a particular
theory about emotion (e.g., basic emotion theory) implies that
certain categorical emotions should be universally recognized
(Keltner et al., 2019), then statistical tests that show that peo-
ple across the globe are able to distinguish these emotions above
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chance level (e.g., Ekman et al., 1969) corroborate this theory.
The logic behind this approach is that we get an increasingly
better understanding of the target system if we keep testing hy-
potheses implied by the corresponding theory. Or in Newell’s
terminology, if we just keep asking nature questions, we will at
some point understand it.

Theories play a less significant role in the predictive mod-
elling culture. Although theories may inspire particular classes
of models and constrain the space of possible models (Rooij &
Baggio, 2021), they do not necessarily represent (a description
of) the target system itself. Instead of theories, the predictive
approach uses models themselves to both describe and explain
a target system (Guest & Martin, 2021). These models can be
thought of as algorithmic or mechanistic hypotheses of how a
particular cognitive capacity or behavior may emerge (Schyns et
al., 2009). For example, the categorical emotion model in chap-
ter 7 represents the mechanistic hypothesis that the capacity of
people to infer and recognize emotions from others’ faces occurs
through an integration of weighted linear combinations of both
facial movements and facial morphological features. Another
example is illustrated in Chapter 2, which describes a study in
which we hypothesized that the same brain networks associated
with emotion experience underlie the capacity for emotion un-
derstanding (Oosterwijk et al., 2017). Using a predictive model
trained on neural patterns associated with components of emo-
tion experience, we could accurately predict emotion compo-
nents associated with emotion understanding in others, which
suggests that these two processes share a common neural imple-
mentation (Peelen & Downing, 2007). Importantly, in the pre-
dictive approach, progress in terms of explanation and under-
standing is not achieved by binary tests of these theory-driven
hypotheses, but by the exploration and development of increas-
ingly accurate models of the target system itself (Naselaris et al.,
2011).



1.1. Inference done differently

To be clear, although the research in this thesis often uses
techniques and models from machine learning, the predictive
approach should not be equated with machine learning. The ori-
gins of this approach, at least in the domain of psychology, can
be traced back to the psychophysics studies in the late nineteenth
century. Psychophysics studies aim to develop lawlike mod-
els of how stimulus attributes give rise to sensory experiences
and rarely feature explicit hypothesis tests of model parameters
(Gescheider, 2013). Predictive, computational models also play
a central role in the field of cognitive science, in which they are
used as formal representations and implementations of cogni-
tive processes (Nufiez et al., 2019). While hypothesis testing
has dominated much of psychology and cognitive neuroscience
apart from psychophysics and cognitive science, the predic-
tive approach has become more prominent in both psychology
(Yarkoni & Westfall, 2017) and cognitive neuroscience (Varo-
quaux & Thirion, 2014) in recent years. Machine learning has
been particularly influential in cognitive neuroscience, where it
was introduced as “pattern analysis” (Norman et al., 2006), but
there are many other examples of predictive approaches in psy-
chology and cognitive neuroscience. These approaches include
network analysis (Borsboom & Cramer, 2013) and structural
equation modelling (Streiner, 2006) in psychology and system
identification (Wu et al., 2006), model-based cognitive neuro-
science (Forstmann & Wagenmakers, 2015; Turner et al., 2017),
and encoding models in cognitive neuroscience (Holdgraf et al.,
2017; Naselaris et al., 2011). Although these approaches differ
in the way they construct and apply models, they all emphasize
predictive accuracy rather than hypothesis testing.

In sum, although the traditional and predictive approach
share a core component — a quantitative model — they differ
in what aspect of the model they use for inference. The asso-
ciated research cultures implement different approaches to ex-
plain and gain understanding of a target system. As I will dis-
cuss in the next section, the predictive and hypothesis testing
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approach each have specific advantages and, when used in com-
bination, can compensate for the weaknesses of the other.

1.2 Towards prediction

Scientific models come in many forms and can have many dif-
ferent purposes. In psychology and cognitive neuroscience, re-
searchers use scientific models primarily to explain cognitive ca-
pacities and behaviors (Yarkoni & Westfall, 2017). Here I use the
term “explanation” to be the identification of the causal compo-
nents of a particular target system (ibid.). Specifically, scientific
models used for hypothesis tests serve as tests of the existence
of causal components implied by a particular theory. Explana-
tion is, arguably, not the only function of scientific models. Two
other functions often attributed to scientific models are predic-
tion and exploration (Cichy & Kaiser, 2019; Gelfert, 2016). In
what follows, I will evaluate the models from the hypothesis test-
ing and the predictive approach on these criteria and argue that
they emphasize these criteria differently.

In terms of their ability to explain, models from the hypoth-
esis testing approach are hard to beat. By employing carefully
controlled experiments in which usually only a single factor is
manipulated, hypothesis tests of models are able to clearly es-
tablish the presence of specific causal components of the target
system. Moreover, these models usually contain few variables
and parameters and are almost always linear, which makes for
easy interpretation of the estimated causal effects. The strict ex-
perimental setup and simplicity of the models, however, leave
little room for exploration of alternative, possibly better mod-
els of the target system of phenomenon. In fact, exploration is
often explicitly discouraged in the context of hypothesis testing
(Wagenmakers et al., 2012), which forces researchers to set up
a completely new study in order to test an alternative model.
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Not only exploration suffers from the emphasis on explanation,
but prediction as well. The very fact that most models for hy-
pothesis testing only intend to investigate and test a very specific
part of the target system results in very simple models that, ar-
guably, cannot capture the complexity of the cognitive capacities
and behaviors studied by psychologists and cognitive neurosci-
entists (Jolly & Chang, 2019; Tosh et al., 2020). The result is that
each individual model is usually only able to correctly predict a
fraction of the variance of the target variable. In a large sample
of psychology studies, Schifer & Schwarz (2019) found that the
median model performance, expressed as the proportion of ex-
plained variance of the target variable, was only 12.6% and was
found to be as low as 2.5% for purely confirmatory and prereg-
istered studies.

A prerequisite for comparing different predictive models is
that, ideally, they use the same dataset. Using the same dataset
to evaluate different models not only facilitates model compar-
ison but also facilitates incremental progress over time. The
famous ImageNet dataset used in computer vision provides a
striking example of the impact common datasets can have on the
field (Deng et al., 2009). Since 2011, the ImageNet dataset has
been used in the yearly ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015), a competition in which
researchers can submit object recognition models trained and
evaluated on the ImageNet dataset. In 2011, the best perform-
ing model achieved 51% accuracy, which has improved yearly,
with the best performing model in the 2021 edition achieving
91%.6.° In the past decade, public datasets have emerged in psy-
chology and cognitive neuroscience as well, often motivated by

*Note that the original article by Schifer & Schwarz (2019) reported ef-
fect size, r, instead of “variance explained”, R%. In analyses that are not cross-
validated, the latter can be obtained by squaring the former (but see Funder
& Ozer, 2019).

*Retrieved from https://paperswithcode.com/sota/
image-classification-on-imagenet.
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the desire to improve research transparency and reproducibility
(Gewin, 2016). However, few have emerged as de facto bench-
marks for a given subdomain like ImageNet is for object recog-
nition, which may be due to the fact that most of these datasets
are acquired in strictly controlled experiments that strongly limit
the variety of models that can be explored and thus limit their
reuse (Naselaris et al., 2021). In cognitive neuroscience, there
have been some notable exceptions, which include the Natural
Scenes Database (Allen et al., 2021) and the Naturalistic Neu-
roimaging Database (Aliko et al., 2020), both with the goal to
facilitate the development of models for real-world vision. In
Chapter 4, I describe our effort to release a large, richly anno-
tated dataset to the public domain (Snoek et al., 2021). This
dataset, the Amsterdam Open MRI Collection, contains a set
of multimodal MRI datasets for individual difference analyses,
which colleagues and I made publicly available. Not only does
the variety in data sources (MRI, physiological, demographic,
and psychometric data) allow for the development of a wide va-
riety of novel models, it can also be used to evaluate the gener-
alizability of existing models (see e.g. Ngo et al., 2021).

The predictive accuracy of predictive models trained on
large, observational datasets, however, does not come for free.
One major disadvantage of the predictive approach is that the
mechanisms their models represent may not represent the ac-
tual mechanisms underlying human cognition and behavior. In
other words, complex models may represent what the philoso-
pher Daniel Dennett called “cognitive wheels”: useful inven-
tions that may solve practical problems, but just like wheels do
not occur in nature, do not reflect the true mechanisms under-
lying human cognitive capacities and behaviors (Dennett, 2006;
see also Maas et al., 2021). A famous example of a cognitive
wheel is the finding that state-of-the-art object recognition mod-
els seem to rely more on the texture than the shape of the ob-
ject (Geirhos et al., 2020; Xu et al., 2018), which seems to be

11
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the other way around in humans (Baker et al.,, 2018). Relat-
edly, models used in artificial intelligence seem to be extremely
sensitive to spurious, non-causal relationships (Geirhos et al.,
2020). A famous example of this issue is the observation that
a model trained on X-ray data to predict pneumonia diagnosis
in fact used text annotations included in the X-ray images rather
than the images themselves (Zech et al., 2018). These limitations
have led to the critique that using complex predictive models to
explain and understand a target system, especially when using
highly non-linear models as is common in many artificial intel-
ligence applications, is like trading in one black box for another
(Kay, 2017). Indeed, given the definition of “explanation” as
identification of causal components of a target system, it is hard
to argue that predictive models by themselves explain anything.

It is fair to say predictive models, by themselves, are not suf-
ficient as a satisfactory explanation of a target system, but this is
not an insurmountable issue. I would argue that the construc-
tion and evaluation of a predictive model is only the first step;
the second step would be to gain insight into the mechanism that
is learned by the model (Cichy & Kaiser, 2019). In this second
step, the models are treated as concrete representations of the
target system that can be manipulated, experimented with, and
picked apart in order to gain insights into its mechanism — not
unlike model organisms in animal research (Scholte, 2018). In
both the machine learning community and the psychology and
cognitive neuroscience community, techniques have been de-
veloped to gain insight into the mechanisms of predictive mod-
els. One common technique is to selectively manipulate specific
model components, such as parameters or intermediate stim-
ulus representations, to test whether these manipulations lead
to similar changes in behavior in models and humans (e.g., Sei-
jdel et al., 2020). A related technique is to selectively manipulate
the input to the model instead of manipulating the model itself.
Chapter 3 outlines such a method that can be used to control

12
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for specific stimulus features (“confounds”) in predictive mod-
els applied to neuroimaging data (see also Dinga et al., 2020),
which can prevent models from learning spurious relationships.
Another technique to increase the evidence for a “valid” model
(rather than a cognitive wheel) is to show that key components
of the model have plausible neural correlates (Giiglii & Gerven,
2015; Kriegeskorte et al., 2008; Yamins et al., 2014) or to directly
constrain models with neural data (Turner et al., 2017). The un-
derlying idea of applying these different techniques is that ex-
planation and understanding of a target system is not something
that is achieved by experiments on the target system directly, but
with experiments on the models that represent them (Cichy &
Kaiser, 2019).

Even though some of the weaknesses of the predictive ap-
proach can be mitigated, this does not mean that hypothesis
testing should be abandoned. I believe that hypothesis testing
remains and will remain an important tool in psychology and
cognitive neuroscience and that there are plenty of scenarios in
which hypothesis testing should in fact be preferred. First, if the
goal is not to provide explanations and gain understanding of
some target system, but to test an intervention, then hypothesis
testing is an appropriate method. For example, if one wants to
know whether some educational intervention improves reading
skills in children, then running a randomized controlled experi-
ment and associated hypothesis test is an excellent way to answer
this question. Second, hypothesis tests may be useful in provid-
ing answers to important (binary) questions that may challenge
important assumptions in a particular research domain or the-
ory. For example, Chapter 5 describes a neuroimaging study
that investigated the neural correlates of curiosity for negative
information (“morbid curiosity”; Oosterwijk et al., 2020), with
the preregistered hypothesis that choosing negative content ac-
tivates reward-related brain regions. The confirmation of this
hypothesis challenges current theories of curiosity, because the

13
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most obvious indicator of reward — a pleasurable experience —
is missing in curiosity for negative content. Therefore, this find-
ing may indicate that information is rewarding “in and of itself”.
Finally, phenomena established by the hypothesis testing ap-
proach may inform and constrain the development of predictive
models (Borsboom et al., 2020; Kellen, 2019). An example of
this feature is illustrated in Chapter 7, which describes a model
that uses variance in facial morphology to predict the emotions
people see in “neutral” faces. The development of this model was
inspired by the extensive literature on the associations between
factors related to variance in facial morphology (e.g., age, gen-
der, and ethnicity) and the emotional interpretations of static,
“neutral” faces (Hess, Adams, & Kleck, 2009). Although the pre-
dictive models were not developed to test specific effects, we ac-
tually observed (or “replicated” if you will) several well-known
effects from the emotional expression literature, such as the vi-
sual similarity and conceptual confusion between anger and dis-
gust expressions (Jack et al., 2014).

To summarize, I believe that the predictive approach repre-
sents a useful addition to the methodological toolbelt of psychol-
ogists and cognitive neuroscientists. Given the striking progress
in machine learning and artificial intelligence, I think that shift-
ing the focus from explanation to prediction may be a promis-
ing avenue for psychology and cognitive neuroscience, but the-
ory and hypothesis testing will remain important to constrain,
inform, and test models — an idea that will be revisited in the
general discussion.

1.3 Outline of this thesis

Although the chapters of this thesis have been shortly intro-
duced in the previous sections, I will shortly summarize them
here for convenience.

14
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In chapter 2, I describe a study in which we used predic-
tive models applied to functional MRI data, known as “decod-
ing models” in the neuroimaging literature, to test a hypothesis
about the shared neural basis of emotion experience and emo-
tion understanding. To remedy the interpretational difficulties
inherent to decoding analyses (and predictive models in gen-
eral), chapter 3 outlines a method we developed to adjust for
confounds in decoding analyses which helps to rule out alter-
native explanations of the results. Moving away from the fo-
cus on predictive models, chapter 4 is the result from our effort
to publish the “Amsterdam Open MRI Collection” (AOMIC), a
set of three large, multimodal, MRI datasets, and chapter 5 de-
scribes a confirmatory, fully pre-registered neuroimaging study
on a psychological phenomenon called “morbid curiosity”. Fi-
nally, the last two chapters return to the use of predictive models,
this time in the context of facial expression perception. Chapter
6 outlines a method we developed (“hypothesis kernel analysis”)
to formalize verbal hypotheses as quantitative predictive mod-
els, which we apply to a specific set of hypotheses about how fa-
cial movements relate to categorical emotions. At last, chapter 7
concludes this thesis with a study that compares predictive mod-
els of affective face perception based on static features (i.e., fa-
cial morphology) and dynamic features (i.e., facial movements),
which shows that people integrate both sources of information
in their affective inferences and experiences.

15



CHAPTER 2

Shared states: using MVPA to test
neural overlap between
self-focused emotion imagery and
other-focused emotion
understanding

This chapter has been published as: Oosterwijk, S.*, Snoek, L.*, Rot-
teveel, M., Barrett, L. E, & Scholte, H. S. (2017). Shared states: using
MVPA to test neural overlap between self-focused emotion imagery
and other-focused emotion understanding. Social cognitive and affec-
tive neuroscience, 12(7), 1025-1035.

* Shared first authorship
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ABSTRACT The present study tested whether the neural pat-
terns that support imagining “performing an action’, “feeling a
bodily sensation” or “being in a situation” are directly involved
in understanding other peoples actions, bodily sensations and
situations. Subjects imagined the content of short sentences de-
scribing emotional actions, interoceptive sensations and situa-
tions (self-focused task), and processed scenes and focused on
how the target person was expressing an emotion, what this per-
son was feeling, and why this person was feeling an emotion
(other-focused task). Using a linear support vector machine
classifier on brain-wide multi-voxel patterns, we accurately de-
coded each individual class in the self-focused task. When gen-
eralizing the classifier from the self-focused task to the other-
focused task, we also accurately decoded whether subjects fo-
cused on the emotional actions, interoceptive sensations and sit-
uations of others. These results show that the neural patterns that
underlie self-imagined experience are involved in understand-
ing the experience of other people. This supports the theoretical
assumption that the basic components of emotion experience
and understanding share resources in the brain.
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2.1 Introduction

To navigate the social world successfully it is crucial to under-
stand other people. But how do people generate meaningful rep-
resentations of other people’s actions, sensations, thoughts and
emotions? The dominant view assumes that representations of
other people’s experiences are supported by the same neural sys-
tems as those that are involved in generating experience in the
self (e.g., Gallese et al., 2004; see for an overview Singer, 2012).
We tested this principle of self-other neural overlap directly, us-
ing multi-voxel pattern analysis (MVPA), across three different
aspects of experience that are central to emotions: actions, sen-
sations from the body and situational knowledge.

In recent years, evidence has accumulated that suggests a
similarity between the neural patterns representing the self and
others. For example, a great variety of studies have shown that
observing actions and sensations in other people engages sim-
ilar neural circuits as acting and feeling in the self (see for an
overview Bastiaansen et al., 2009). Moreover, an extensive re-
search program on pain has demonstrated an overlap between
the experience of physical pain and the observation of pain
in other people, utilizing both neuroimaging techniques (e.g.,
Lamm et al.,, 2011) and analgesic interventions (e.g., Riitgen et
al., 2015; Mischkowski et al., 2016). This process of “vicari-
ous experience” or “simulation” is viewed as an important com-
ponent of empathy (Carr et al.,, 2003; Decety, 2011; Keysers
& Gazzola, 2014). In addition, it is argued that mentalizing
(e.g. understanding the mental states of other people) involves
the same brain networks as those involved in self-generated
thoughts (Uddin et al., 2007; Waytz & Mitchell, 2011). Specify-
ing this idea further, a constructionist view on emotion proposes
that both emotion experience and interpersonal emotion under-
standing are produced by the same large-scale distributed brain
networks that support the processing of sensorimotor, intero-
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ceptive and situationally relevant information (Barrett & Sat-
pute, 2013; Oosterwijk & Barrett, 2014). An implication of these
views is that the representation of self- and other-focused emo-
tional actions, interoceptive sensations and situations overlap in
the brain.

Although there is experimental and theoretical support for
the idea of self-other neural overlap, the present study is the first
to directly test this process using MVPA across three different
aspects of experience (i.e. actions, interoceptive sensations and
situational knowledge). Our experimental design consisted of
two different tasks aimed at generating self- and other-focused
representations with a relatively large weight given to either ac-
tion information, interoceptive information or situational infor-
mation.

In the self-focused emotion imagery task (SF-task) subjects
imagined performing or experiencing actions (e.g., pushing
someone away), interoceptive sensations (e.g., increased heart
rate) and situations (e.g., alone in a park at night) associated
with emotion. Previous research has demonstrated that pro-
cessing linguistic descriptions of (emotional) actions and feeling
states can result in neural patterns of activation associated with,
respectively, the representation and generation of actions and
internal states (Oosterwijk et al., 2015; Pulvermiiller & Fadiga,
2010). Furthermore, imagery-based inductions of emotion have
been successfully used in the MRI scanner before (Oosterwijk et
al., 2012; Wilson-Mendenhall et al., 2011), and are seen as ro-
bust inducers of emotional experience (Lench et al., 2011). In
the other-focused emotion understanding task (OF-task), sub-
jects viewed images of people in emotional situations and fo-
cused on actions (i.e., How does this person express his/her emo-
tions?), interoceptive sensations (i.e., What does this person feel
in his/her body) or the situation (i.e., Why does this person feel
an emotion?). This task is based on previous research study-
ing the neural basis of emotion oriented mentalizing (Spunt &
Lieberman, 2012).
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With MVPA, we examined to what extent the SF- and OF-
task evoked similar neural patterns. MVPA allows researchers
to assess whether the neural pattern associated with one set of
experimental conditions can be used to distinguish between an-
other set of experimental conditions. This relatively novel tech-
nique has been successfully applied to the field of social neu-
roscience in general (e.g., Gilbert et al., 2012; Brosch et al,
2013; Parkinson et al., 2014), and the field of self-other neural
overlap in particular. For example, several MVPA studies re-
cently assessed whether experiencing pain and observing pain
in others involved similar neural patterns (Corradi-DellAcqua
et al., 2016; Krishnan et al., 2016). Although there is an on-
going discussion about the specifics of shared representation in
pain based on these MVPA results (see for an overview Zaki et
al., 2016), many authors emphasize the importance of this tech-
nique in the scientific study of self-other neural overlap (e.g.,
Corradi-Dell’Acqua et al., 2016; Krishnan et al., 2016).

MVPA is an analysis technique that decodes latent cate-
gories from fMRI data in terms of multi-voxel patterns of activ-
ity (Norman et al., 2006). This technique is particularly suited
for our research question for several reasons. First of all, al-
though univariate techniques can demonstrate that tasks acti-
vate the same brain regions, only MVPA can statistically test
for shared representation (Lamm & Majdandzi¢, 2015). We will
evaluate whether multivariate brain patterns that distinguish be-
tween mental events in the SF-task can be used to distinguish,
above chance level, between mental events in the OF-task. Sec-
ond, MVPA analyses are particularly useful in research that is
aimed at examining distributed representations (Singer, 2012).
Based on our constructionist framework, we indeed hypothe-
size that the neural patterns that will represent self- and other
focused mental events are distributed across large-scale brain
networks. To capture these distributed patterns, we used MVPA
in combination with data-driven univariate feature selection on
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whole-brain voxel patterns, instead of limiting our analysis to
specific regions-of-interest (Haynes, 2015). And third, in con-
trast to univariate analyses that aggregate data across subjects,
MVPA can be performed within-subjects and is thus able to in-
corporate individual variation in the representational content of
multivariate brain patterns. In that aspect within-subject MVPA
is sensitive to individual differences in how people imagine ac-
tions, sensations and situations, and how they understand oth-
ers. In short, for our purpose to explicitly test the assumption
that self and other focused processes share neural resources,
MVPA is the designated method.

We tested the following two hypotheses. First, we tested
whether we could classify self-imagined actions, interoceptive
sensations and situations above chance level. Second, we tested
whether the multivariate pattern underlying this classification
could also be used to classify the how, what and why condition
in the other-focused task.

2.2 Methods

Subjects

In total, we tested 22 Dutch undergraduate students from the
University of Amsterdam (14 females; M,g. = 21.48, s.d..qe =
1.75). Of those 22 subjects, 13 subjects were tested twice in 2 ses-
sions about 1 week apart. Half of those sessions were used for the
model optimization procedure. The other half of the sessions,
combined with an additional nine subjects (who were tested
only once), constituted the model validation set (see Model op-
timization procedure section). In total, two subjects were ex-
cluded from the model validation dataset: one subject was ex-
cluded because there was not enough time to complete the ex-
perimental protocol and another subject was excluded due to
excessive movement (>3 mm within data acquisition runs).
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All subjects signed informed consent prior to the experi-
ment. The experiment was approved by the University of Ams-
terdam’s ethical review board. Subjects received 22.50 euro per
session. Standard exclusion criteria regarding MRI safety were
applied and people who were on psychopharmacological medi-
cation were excluded a priori.

Experimental design
Self-focused emotion imagery task

The self-focused emotion imagery task (SF-task) was created to
preferentially elicit self-focused processing of action, interocep-
tive or situational information associated with emotion. Sub-
jects processed short linguistic cues that described actions (e.g.,
pushing someone away; making a fist), interoceptive sensations
(e.g., being out of breath; an increased heart rate), or situations
(e.g., alone in a park at night; being falsely accused) and were
instructed to imagine performing or experiencing the content.
The complete instruction is presented in the Supplementary Ma-
terials; all stimuli used in the SF-task are presented in Supple-
mentary Table A.1. Linguistic cues were selected from a pilot
study performed on an independent sample of subjects (n = 24).
Details about this pilot study are available on request. The de-
scriptions generated in this pilot study were used as qualitative
input to create short sentences that described actions, sensations
or situations that were associated with negative emotions, with-
out including discrete emotion terms. The cues did not differ in
number of words, nor in number of characters (F < 1).

The SF-task was performed in two runs subsequent to the
other-focused task using the software package Presentation
(Version 16.4, www.neurobs.com). Each run presented 60 sen-
tences on a black background (20 per condition) in a fully ran-
domized event-related fashion, with a different randomization
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FIGURE 2.1 Overview of the self-focused and other-focused task.

for each subject. Note that implementing a separate randomiza-
tion for each subject prevents inflated false positive pattern cor-
relations between trials of the same condition, which may occur
in single-trial designs with short inter-stimulus intervals (Mum-
ford et al., 2014). A fixed inter-trial-interval of 2 seconds sepa-
rating trials; 12 null-trials (i.e. a black screen for 8 seconds) were
mixed with the experimental trials at random positions during
each run (see Figure 2.1).

Other-focused emotion understanding task

The other-focused emotion understanding task (OF-task) was
created to preferentially elicit other-focused processing of action,
interoceptive or situational information associated with emo-
tion. Subjects viewed images of people in negative situations
(e.g. a woman screaming at a man, a man held at gunpoint). A
red rectangle highlighted the face of the person that the subjects
should focus on to avoid ambiguity in images depicting more
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than one person. Image blocks were preceded by a cue indi-
cating the strategy subjects should use in perceiving the emo-
tional state of the people in the images (Spunt & Lieberman,
2012). The cue How instructed the subjects to identify actions
that were informative about the person’s emotional state (i.e.,
How does this person express his/her emotions?). The cue What
instructed subjects to identify interoceptive sensations that the
person could experience (i.e., What does this person feel in
his/her body). The cue Why instructed subjects to identify rea-
sons or explanations for the person’s emotional state (i.e., Why
does this person feel an emotion?). The complete instruction is
presented in the Supplementary Materials.

Stimuli for the OF-task were selected from the International
Affective Picture System database (IAPS; Lang, 2005; Lang et
al., 1997), the image set developed by the Kveraga lab (http:
/lwww.kveragalab.org/stimuli.html; Kveraga et al., 2015) and
the internet (Google images). We selected images based on a
pilot study, performed on an independent sample of subjects (n
= 22). Details about this pilot study are available on request.

The OF-task was presented using the software package Pre-
sentation. The task presented thirty images on a black back-
ground in blocked fashion, with each block starting with a what,
why or how cue (see Figure 2.1). Each image was shown three
times, once for each cue type. Images were presented in blocks
of six, each lasting 6 seconds, followed by a fixed inter trial inter-
val of 2 seconds. Null-trials were inserted at random positions
within the blocks. Both the order of the blocks and the specific
stimuli within and across blocks were fully randomized, with a
different randomization for each subject.

Procedure

Each experimental session lasted about 2 hours. Subjects who
underwent two sessions had them on different days within a
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time span of 1 week. On arrival, subjects gave informed con-
sent and received thorough task instructions, including practice
trials (see the Supplementary Materials for a translation of the
task instructions). The actual time in the scanner was 55 min-
utes, and included a rough 3D scout image, shimming sequence,
3-min structural T1-weighted scan, one functional run for the
OF-task and two functional runs for the SF-task. We deliber-
ately chose to present the SF-task after the OF-task to exclude
the possibility that the SF-task affected the OF-task, thereby in-
fluencing the success of the decoding procedure.

After each scanning session, subjects rated their success rate
for the SF-task and OF-task (see Supplementary Figure A.1). In
the second session, subjects filled out three personality question-
naires that will not be further discussed in this paper and were
debriefed about the purpose of the study.

Image acquisition

Subjects were tested using a Philips Achieva 3T MRI scanner
and a 32-channel SENSE headcoil. A survey scan was made for
spatial planning of the subsequent scans. Following the survey
scan, a 3-min structural T1-weighted scan was acquired using
3D fast field echo (TR: 82 ms, TE: 38 ms, flip angle: 8°, FOV:
240 x 188 mm, 220 slices acquired using single-shot ascending
slice order and a voxel size of 1.0 x 1.0 x 1.0 mm). After the
T1-weighted scan, functional T2*-weighted sequences were ac-
quired using single shot gradient echo, echo planar imaging (TR
=2000 ms, TE = 27.63 ms, flip angle: 76.1°, FOV: 240 x 240 mm,
in-plane resolution 64 x 64, 37 slices (with ascending acquisi-
tion), slice thickness 3 mm, slice gap 0.3 mm, voxel size 3 x 3 x
3 mm), covering the entire brain. For the SF-task, 301 volumes
were acquired; for the OF-task 523 volumes were acquired.
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Model optimization procedure

As MVPA is a fairly novel technique, no consistent, optimal
MVPA pipeline has been established (Etzel et al., 2011). There-
fore, we adopted a validation strategy in the present study that
is advised in the pattern classification field (Kay et al., 2008;
Kriegeskorte et al., 2009). This strategy entailed that we sepa-
rated our data into an optimization dataset to find the most op-
timal parameters for preprocessing and analysis, and a valida-
tion dataset to independently verify classification success with
those optimal parameters. We generated an optimization and
validation dataset by running the SF-task and OF-task twice, in
two identical experimental sessions for a set of thirteen subjects.
The sessions were equally split between the optimization and
validation set (see Figure 2.2A); first and second sessions were
counterbalanced between the two sets. Based on a request re-
ceived during the review process, we added nine new subjects to
the validation dataset. Ultimately, the optimization-set held 13
sessions and the validation-set, after exclusion of 2 subjects (see
Subjects section), held 20 sessions.

In the optimization-set, we explored how different pre-
processing options and the so-called ‘hyperparameters’ in the
MVPA pipeline affected the performance of the (multivariate)
analyses (visualized in Figure 2.2B; see MVPA pipeline subsec-
tion for more details). Thus, we performed the self- and cross-
analyses on the data of the optimization set multiple times with
different preprocessing options (i.e., smoothing kernel, low-pass
filter and ICA-based denoising strategies) and MVPA hyperpa-
rameter values (i.e., univariate feature selection threshold and
train/test size ratio during cross-validation). We determined
the optimal parameters on the basis of classification perfor-
mance, which was operationalized as the mean precision value
after a repeated random subsampling procedure with 1000 iter-
ations. A list with the results from the optimization procedure
can be found in Supplementary Table A.2 and Supplementary
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FIGURE 2.2 Schematic overview of the cross-validation procedures. A)
The partitioning of the dataset into an optimization-set (used for tuning of
preprocessing and MVPA hyperparameters) and a validation-set (used to
get a fully cross-validated, unbiased estimate of classification performance).
The preprocessing and MVPA hyperparameters yielded from the optimiza-
tion procedure were subsequently applied to the preprocessing and MVPA
pipeline of the validation-set. B) The within-subject MVPA pipeline of the
self- and cross-analysis implemented in a repeated random subsampling
scheme with 100,000 iterations. In each iteration, 90% of the self-data trials
(i.e. train-set) were used for estimating the scaling parameters, performing
feature selection and fitting the SVM. These steps of the pipeline (i.e. scal-
ing, feature selection, SVM fitting) were subsequently applied to the inde-
pendent test-set of both the self-data trials and the other-data trials.
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Figure A.2. The optimal parameters were then used for prepro-
cessing and the self- and cross-analysis within the validation-
set, in which the findings from the optimization-set were repli-
cated. All findings discussed in the 2.3 section follow from the
validation-set (see Supplementary Figure A.3 for an overview of
the findings from the optimization-set).

Preprocessing and single-trial modeling

Functional and structural data were preprocessed and analyzed
using FSL 5.0 (Jenkinson et al.,, 2012) and MATLAB (2012b;
www.mathworks.com/products/matlab), using an in-house de-
veloped preprocessing pipeline and the parameters established
in the optimization procedure. Functional data were corrected
for motion (using FSL MCFLIRT) and slice timing and was
spatially smoothed (5 mm isotropic kernel). After preprocess-
ing, individual time series were modeled using a double-gamma
hemodynamic response function in a single-trial GLM design
using FSLs FEAT. Resulting beta values were converted to t-
values (Misaki et al., 2010), constituting a whole-brain pattern
of t-values per trial. Subsequently, the data were indexed by a
gray-matter mask (excluding most white-matter, CSF and brain-
stem voxels). Thus, the data points for the MVPA consist of
whole-brain (gray matter) t-value patterns per trial. For the op-
timization analyses, the data were transformed to standard space
(MNI152, 2 mm) using FSUs FNIRT. To reduce computation
time for the validation data, and in particular its correspond-
ing permutation analysis, analyses on the validation dataset were
performed on data in native (functional) space.
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Multi-voxel pattern analysis
MVPA pipeline

Within the optimization and validation dataset, we imple-
mented an iterated cross-validation scheme that separated the
data into a train-set and a test-set (this procedure is described
in more detail in the next section). Before fitting the classifier
on the train-set in each iteration of the cross-validation scheme,
standardization and voxel selection were estimated and applied
to the train-set. Standardization ensured that each feature (i.e.,
voxel) had zero mean and unit variance across trials. After
standardization, voxel selection was performed in each itera-
tion on the train-set by extracting the voxels with the highest
average pairwise Euclidian distance across classes, which will
be subsequently referred to as a voxel’s differentiation score.
More specifically, differentiation scores were calculated by sub-
tracting the mean value across trials per class from each other
(i.e., action—interoception, action—situation, interoception—
situation), normalizing these values across voxels (yielding “z-
scores”), and taking their absolute value. The three resulting val-
ues per voxel were averaged and the most differentiating vox-
els (z-score threshold: 2.3, as determined by the optimization
procedure; see Model optimization procedure section) were ex-
tracted and used as features when fitting the classifier. Impor-
tantly, the standardization parameters (voxel mean and vari-
ance) and voxel indices (i.e. which voxels had differentiation
scores above threshold) were estimated from the train-set only
and subsequently applied to the test-set to ensure independence
between the train- and test-set (see Figure 2B). After standard-
ization and voxel selection in each iteration, a support vector
classifier (SVC) was fit on the train-set and cross-validated on
the test-set, generating a class probability for each trial in the
test-set. Our classifier of choice was the SVC implementation
from the scikit-learn svm module (Pedregosa et al., 2011) with
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a linear kernel, fixed regularization parameter (C) of 1.0, one-
vs-one multiclass strategy, estimation of class probability out-
put (instead of discrete class prediction) and otherwise default
parameters.

Cross-validation scheme and bagging procedure

Cross-validation of the classification analysis was implemented
using a repeated random subsampling cross-validation scheme
(also known as Monte Carlo cross-validation), meaning that,
for each iteration of the analysis, the classification pipeline (i.e.,
standardization, voxel selection and SVM fitting) was applied
on a random subset of data points (i.e., the train-set) and cross-
validated on the remaining data (i.e., the test-set). Each trial be-
longed to one out of three classes: action, interoception or sit-
uation. Following the results from the parameter optimization
process, we selected four trials per class for testing, amounting
to 12 test-trials per iteration.

Per iteration, the classifier was fit on the train-set from the
SF-data. Subsequently, this classifier was cross-validated on
12 test SF-trials (test-set “self-analysis”) and 12 test OF-trials
(test-set “cross-analysis”; see Figure 2B). This process was subse-
quently iterated 100 000 times to generate a set of class distribu-
tions for each trial. After all iterations, the final predicted class of
each trial was determined by its highest summed class probabil-
ity across iterations (also known as “soft voting”; see Supplemen-
tary Figure A.4). This strategy of a random sub-sampling cross-
validation scheme in combination with majority (soft) voting is
more commonly known as “bagging” (Breiman, 1996). An im-
portant advantage of bagging is that it reduces model overfit-
ting by averaging over an ensemble of models, which is espe-
cially useful for multi-voxel pattern analyses because fMRI data
is known to display high variance (Varoquaux, 2018).

After generating a final prediction for all trials using the soft
voting method, we constructed confusion matrices for both the

30



2.2. Methods

self- and cross-analysis. In each raw confusion matrix with pre-
diction counts per class, cells were normalized by dividing pre-
diction counts by the sum over rows (i.e., the total amount of
predictions per class), yielding precision-scores (also known as
positive predictive value). In other words, this metric represents
the ratio of true positives to the sum of true positives and false
positives (see Supplementary Figure A.5 for a description of the
results expressed as recall estimates, or the ratio of true positives
to the total number of samples in that class). This classification
pipeline generated subject-specific confusion matrices that were
subsequently averaged to generate the final classification scores.

Statistical evaluation

To evaluate the statistical significance of the observed average
precision-scores in the confusion matrices, we permuted the
original self- and cross-analysis 1300 times per subject with ran-
domly shuflled class labels, yielding 1300 confusion matrices
(with precision-scores). We then averaged the confusion ma-
trices across subjects, yielding 1300 permuted confusion ma-
trices reflecting the null-distribution of each cell of the matrix
(which is centered around chance level classification, i.e., 33%).
For each cell in the diagonal of the observed confusion matrix,
p-values were calculated as the proportion of instances of values
in the permuted matrix which were higher than the values in the
observed matrix (Nichols & Holmes, 2002). To correct for mul-
tiple comparisons, p-values were tested against a Bonferroni-
corrected threshold. The distribution of precision-scores and
the relationship between precision-scores in the self- and cross-
analysis is reported in Supplementary Figure A.6.

Spatial representation

To visualize the classifier feature weights, we plotted the abso-
lute feature weights averaged over iterations, subjects and pair-
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wise classifiers (action vs interoception, action vs situation, in-
teroception vs situation) that underlie our multiclass classifica-
tion analysis. We chose to visualize the spatial representation
of our model by plotting the average absolute feature weights,
because the absolute value of feature weights in linear SVMs
can be interpreted as how important the weights are in con-
structing the model’s decision hyperplane (Ethofer et al., 2009;
Guyon et al., 2002; Stelzer et al., 2014). To correct for a posi-
tive bias in plotting absolute weights, we ran the main classifica-
tion analysis again with permuted labels to extract the average
absolute feature weights that one would expect by chance. Sub-
sequently, a voxel-wise independent ¢-test was performed for all
feature weights across subjects, using the average permuted fea-
ture weights as the null-hypothesis, yielding an interpretable ¢-
value map (see the supplementary code notebook on our Github
repository for computational details).

Additional analyses

In addition to the self-analysis and the self-to-other cross-
analysis presented in the main text, we also performed a within-
subjects other-to-self cross-analysis (see for a similar approach
Corradi-DellAcqua et al., 2016) and a between-subjects self-
analysis and self-to-other cross-analysis. These analyses for-
ward largely similar results as the analyses presented in the main
text. Due to space constraints, we present these additional anal-
yses in the Supplementary Materials. Supplementary Figure
A.7 represents confusion matrices with precision and recall es-
timates for the other-to-self cross-analysis. Supplementary Fig-
ure A.8 presents the results of MVPA analyses using condition-
average voxel patterns across subjects instead of single-trial pat-
terns within subjects.
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Univariate analysis

To be complete, we also report a set of univariate analyses per-
formed on the SF-task and the OF-task data. The univariate
analyses were performed on the validation dataset, and were
subject to the same preprocessing steps as the MVPA analy-
sis, except that we did not model each trial, but each condi-
tion as a separate regressor. The group-level analysis was per-
formed with FSI's FLAME1 option. To examine differences
in neural activity between conditions, we calculated contrasts
between the three classes in the SF-task (self-action vs self-
interoception; self-action vs self-situation and self-interoception
vs self-situation) and the three classes in the OF-task (other-
action vs other-interoception; other-action vs other-situation
and other-interoception vs other-situation). We report clusters
that were corrected using cluster-correction with a voxel-wise
threshold of 0.005 (z = 2.7) and a cluster-wise p-value threshold
of 0.05.

Code availability

The MVPA-analysis and subsequent (statistical) analyses were
implemented using custom Python scripts, which depend heav-
ily on the skbold package, a set of tools for machine learning
analyses of fMRI data developed in-house (see https://github.
com/lukassnoek/skbold). The original scripts were documented
and are hosted at the following Github repository: https://
github.com/lukassnoek/SharedStates.

2.3 Results

Multi-voxel pattern analysis

The analyses of the SF-task demonstrated that voxel patterns re-
flecting imagined self-focused actions, interoceptive sensations
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and situations associated with emotion could be decoded accu-
rately for each individual class (all p < 0.001, see Figure 2.3).
Furthermore, when we generalized the classifier based on the
SF-task to the data from the OF-task (i.e. cross-analysis), we
found that neural representations of emotional actions, intero-
ceptive sensations and situations of others could also be reliably
decoded above chance (all p < 0.001; see Figure 2.3). Supple-
mentary Table A.3 presents mean precision-scores across classes
for each subject separately. As predicted, our findings demon-
strate that self-imagined actions, interoceptive sensations and
situations are associated with distinct neural patterns. Further-
more, and as predicted, our findings demonstrate that the pat-
terns associated with self-imagined actions, sensations and situ-
ations can be used to decode other-focused actions, interoceptive
sensations and situations (see Supplementary Figure A.7 for the
complementary other-to-self cross-analysis).

To visualize which neural regions were involved in the suc-
cessful decoding of the three classes in the OF-task and SF-
task, we display in Figure 2.4 the averaged absolute values of
the SVM feature weights. Note that Figure 2.4 only displays
one feature map, as both the self and cross-analysis depend on
the same model. Regions displaying high and consistent feature
weights across subjects were frontal pole (including parts of the
dorsomedial prefrontal cortex and ventromedial prefrontal cor-
tex), orbitofrontal cortex (OFC), inferior frontal gyrus (IFG),
superior frontal gyrus (SFG), middle frontal gyrus (MFG), in-
sular cortex, precentral gyrus, postcentral gyrus, posterior cin-
gulate cortex/precuneus, superior parietal lobule (SPL), supra-
marginal gyrus (SMG), angular gyrus (AG), middle temporal
gyrus (MTG), temporal pole (TP), lateral occipital cortex (10C)
and occipital pole (see Supplementary Table A .4 for an overview
of all involved regions).
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FIGURE 2.3 Confusion matrices for the self- (left diagram) and cross-
analysis (right diagram). Values indicate precision-scores, representing the
proportion of true positives given all predictions for a certain class. Note
that action and interoception columns in the cross-analysis confusion ma-
trix do not add up to 1, which is caused by the fact that, for some subjects,
no trials were predicted as action or interoception, rendering the calculation
of precision ill-defined (i.e., division by zero). In this case, precision scores
were set to zero.
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FIGURE 2.4 Uncorrected t-value map of average feature weights across
subjects; t-values were calculated by dividing the average absolute fea-
ture weights, which was corrected for positive bias by subtracting the mean
permuted absolute weight across all iterations, by the standard error across
subjects. Only voxels belonging to clusters of 20 or more voxels are shown.
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FIGURE 2.5 Univariate contrasts for the self-focused and other-focused
task.

Univariate analyses

Figure 2.5 displays the pattern of neural activity revealed by uni-
variate contrasts between the three different classes in the SF-
task and the OF-task. For the sake of brevity, we summarize the
most relevant univariate results here. Please see the Supplemen-
tary Materials and the study’s Github repository for an overview
of all clusters.

In the SF-task, action was associated with increased involve-
ment of the MFG, SFG, AG, SMG, l0C and middle temporal
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gyrus (temporo-occipital) when compared with interoception,
and increased involvement of the IFG, MFG, SFG, anterior cin-
gulate cortex (ACC), supplementary motor area (SMA), pre-
central gyrus, postcentral gyrus, insular cortex, SMG, SPL, 10C
and middle temporal gyrus (temporo-occipital) when compared
with situation. Interoception was associated with increased in-
volvement of the insular cortex, precentral gyrus, postcentral
gyrus and central operculum when compared with action, and
increased involvement of the insular cortex, central operculum,
parietal operculum, IFG, frontal pole, ACC, SMA, precentral
gyrus, postcentral gyrus, SMG, SPL and putamen when com-
pared with situation. The situation vs action contrast and the
situation vs interoception contrast forwarded clusters in simi-
lar regions, including the temporal pole, superior/middle tem-
poral gyrus, IFG, SFG, frontal pole, medial prefrontal cortex
(mPFC), OFC, precuneus, posterior cingulate cortex (PCC),
10C, fusiform gyrus, hippocampus and lingual gyrus.

In the OF-task, action was associated with increased involve-
ment of the IFG, MFG, SFG, precentral gyrus, postcentral gyrus,
SMG, SPL, middle/inferior temporal gyrus (temporo-occipital),
10C and fusiform gyrus, when compared with interoception,
and increased involvement of the IFG, MFG, SFG, frontal pole,
precentral gyrus, postcentral gyrus, SMG, SPL, middle/inferior
temporal gyrus (temporo-occipital) and 10C, when compared
with situation. Interoception was associated with increased in-
volvement of the left frontal pole when compared with action,
and increased involvement of the SMG, SPL, precentral gyrus,
postcentral gyrus, PCC, IFG and frontal pole, when compared
with situation. The situation vs action contrast and the situation
vs interoception contrast forwarded clusters in similar regions,
including the temporal pole, superior/middle temporal gyrus,
frontal pole, mPFC, PCC, precuneus, AG, 10C, occipital pole,
fusiform gyrus and lingual gyrus.
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2.4 Discussion

In this study, we investigated the neural overlap between self-
focused emotion imagery and other-focused emotion under-
standing using a decoding approach. The results confirmed
our hypothesis that other-focused representations of emotion-
related actions, bodily sensations and situations can be decoded
from neural patterns associated with accessing similar sources
of information in a self-focused task. This cross-classification
was successful even though the tasks employed different stimu-
lus materials and instructions. Thus, the observed neural over-
lap between the underlying processes in the SF-task and OF-task
cannot be attributed to similarities in stimulus dimensions or
task instructions. Rather, we conclude from our findings that
emotion experience and emotion understanding have basic psy-
chological processes in common.

Although we could successfully classify the interoception
class in the SF-task (across both datasets), and in the OF-task
in the validation dataset, we were not able to successfully clas-
sify the interoception class in the OF-task in the optimization
dataset. Furthermore, although precision and recall metrics
demonstrated similar results for the action and situation cross-
classification in the validation dataset, these metrics demon-
strated different results for the classification of the interoception
class (see Supplementary Figure A.5). This difference was partly
driven by the fact that trials were very infrequently classified
as interoception in the cross-classification analysis. The find-
ing that subjects reported lower success rates for the what trials
in which they were asked to identify interoceptive sensations in
other people than for the how (action) and why (situation) trials
may point to a possible explanation for the inconsistent findings
regarding interoception. Although speculative, it may be rela-
tively easy to recognize (and represent) interoceptive sensations
when they are described in words (as in the SF-task), but rel-
atively hard to deduce these sensations when only diffuse cues
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about someone’ internal state are available (e.g. posture, frown-
ing facial expression, as in the OF-task).

An exploration of the spatial characteristics of the dis-
tributed neural pattern associated with successful decoding of
the SF-task and OF-task revealed regions that are commonly ac-
tive during self- and other-focused processing. First, we found
that successful classification was associated with voxels in the
precentral gyrus, IFG, SMA and SPL. These same regions were
also revealed by the univariate analyses, in particular for the ac-
tion and interoception classes. These regions are part of the
so-called “mirror” network, which is argued to support both
action planning and action understanding (Bastiaansen et al,,
2009; Gallese et al., 2004; Spunt & Lieberman, 2012; Van Over-
walle & Baetens, 2009). Furthermore, we found that successful
classification was associated with voxels in the lateral occipital
cortex and fusiform gyrus, which have been linked in the lit-
erature to the processing of both concrete and abstract action
(Wurm & Lingnau, 2015) and the (visual) processing of emo-
tional scenes, faces and bodies (Gelder et al., 2010; Sabatinelli et
al., 2011). The univariate analyses demonstrated activity in the
10C and the fusiform gyrus in particular for the situation class,
both when subjects viewed images of other people in emotional
situations, and when subjects imagined being in an emotional
situation themselves.

Second, we found that successful classification was associ-
ated with voxels in regions associated with somatosensory pro-
cessing (postcentral gyrus) and the representation of interocep-
tive sensations (insular cortex, see Craig & Craig, 2009; Med-
ford & Critchley, 2010). Univariate analyses of the SF-task also
demonstrated involvement of these regions for both the action
and interoception classes. This pattern of activation is consis-
tent with embodied cognition views that propose that thinking
about or imagining bodily states is grounded in simulations of
somatosensory and interoceptive sensations (Barsalou, 2009).
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In contrast to previous work on interoceptive simulation when
observing pain or disgust in other people (cf. Bastiaansen et al.,
2009; Lamm et al., 2011), the univariate analyses of the OF-task
did not demonstrate insular cortex activation for the interocep-
tion class.

And third, we found that successful classification was asso-
ciated with voxels in the middle temporal gyrus (including the
temporal pole), PCC/precuneus, dmPFC and vmPFC. These re-
gions are part of the so-called “mentalizing” network (or “de-
fault” network). This same network was also revealed by the
univariate analyses, in particular for the situation class. Meta-
analyses have demonstrated that the mentalizing network is
commonly active during tasks involving emotion experience
and perception (Lindquist et al., 2012), mentalizing/theory of
mind (Sprengetal., 2009; Van Overwalle & Baetens, 2009), judg-
ments about the self and others (Denny et al., 2012) and seman-
tic/conceptual processing in general (Binder et al., 2009). More-
over, this network contributes to the representation of emotion
knowledge (Peelen et al., 2010) and is involved in both em-
pathy (Keysers & Gazzola, 2014; Zaki & Ochsner, 2012) and
self-generated thought (Andrews-Hanna et al., 2014). We pro-
pose that this network supports the implementation of situated
knowledge and personal experience that is necessary to gener-
ate rich mental models of emotional situations, both when ex-
perienced individually, and when understood in someone else
(cf. Barrett & Satpute, 2013; Oosterwijk & Barrett, 2014).

The most important contribution of our study is that it pro-
vides direct evidence for the idea of shared neural resources be-
tween self-and other focused processes. It is important, how-
ever, to specify what we think this “sharedness” entails. In re-
search on pain, there is an ongoing discussion about whether
experiencing pain and observing pain in others are distinct pro-
cesses (Krishnan et al., 2016), or whether experiencing and ob-
serving pain involve a shared domain-specific representation
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(e.g., a discrete pain-specific brain state; Corradi-DellAcqua
et al., 2016) and/or the sharing of domain-general processes
(e.g. general negative affect; Zaki et al., 2016). Connecting to
this discussion, we think that it is unlikely that our decoding suc-
cess reflects the sharing of discrete experiential states between
the SF-task and OF-task. After all, unlike in studies on pain, the
stimuli in our tasks referred to a large variety of different actions,
sensations and situations. Instead, decoding success in our study
is most likely due to shared brain state configurations, reflecting
the similar engagement of domain-general processes evoked by
self- and other-focused instances of action (or interoceptive sen-
sation or situation). This interpretation is consistent with views
that suggests that global processes are shared between pain ex-
perience and pain observation (Lamm et al., 2011; Zaki et al.,
2016) or between self- and other-focused tasks in general (e.g.,
Legrand & Ruby, 2009). Moreover, this interpretation is consis-
tent with the suggestion that neural re-use is a general principle
of brain functioning (e.g., Anderson, 2016).

In our constructionist view, we posit that emotion im-
agery and understanding share basic psychological processes
(cf. Oosterwijk & Barrett, 2014). More specifically, both emo-
tion imagery and understanding are “conceptual acts” in which
the brain generates predictions based on concept knowledge
(including sensorimotor and interoceptive predictions) that
are meaningful within a particular situational context (Bar-
rett, 2012; Barrett & Simmons, 2015). Based on accumulating
evidence, we propose that these predictions are implemented
in domain-general brain networks (cf. Oosterwijk et al., 2012;
Barrett & Satpute, 2013). The relative contribution of these
networks depends on the demands of the situational context.
Specifically, in contexts where people are focused on actions and
expressions (their own or someone else’s) a network that sup-
ports the representation of sensorimotor states (i.e., the mir-
ror system) may contribute relatively heavily; in contexts where
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people are focused on bodily states (their own or someone
else’s) a network that supports the representation of interocep-
tive states (i.e., the salience network) may contribute relatively
heavily; and in contexts where people are focused on interpret-
ing a situation (their own or someone else’s) a network that sup-
ports a general inferential meaning-making function (i.e., the
mentalizing network) may contribute relatively heavily (see also
Oosterwijketal., 2015). We believe that it is likely that our ability
to successfully distinguish between classes in the self-task relies
on the relatively different patterns of activity across these net-
works for actions, interoceptive sensations and situations. Re-
garding our ability to successfully generalize from the self- to
the other-focused task, we believe that this relies on the rela-
tively similar pattern of activity across these networks when peo-
ple generate self-focused or other-focused instances of action (or
interoceptive sensation or situation).

Our explicit manipulation of the weight of action, interocep-
tive and situational information in the SF-task and the OF-task
tests the possibility of shared representation in a novel way. Al-
though this procedure may seem artificial, social neuroscience
studies support the notion that there is contextual variety in
the contribution of action, interoceptive, and situation informa-
tion when understanding other people (Oosterwijk et al., 2015;
Van Overwalle & Baetens, 2009). Moreover, this weighting may
mimic the variability with which these sources of information
contribute to different instances of subjective emotional expe-
rience in reality (Barrett, 2012). In future directions, it may be
relevant to apply the current paradigm to the study of individu-
als in which access to these sources of information is disturbed
(e.g., individuals with different types of psychopathology) or fa-
cilitated (e.g., individuals with high interoceptive sensitivity).

In short, the present study demonstrates that the neural pat-
terns that support imagining “performing an action’, “feeling a
bodily sensation” or “being in a situation” are directly involved
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in understanding other people’s actions, sensations and situa-
tions. This supports our prediction that self- and other-focused
emotion processes share resources in the brain.
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CHAPTER 3

How to control for confounds in
decoding analyses of
neuroimaging data

This chapter has been published as: Snoek, L.¥, Mileti¢, S.*, & Scholte,
H.S. (2019). How to control for confounds in decoding analyses of

neuroimaging data. Neurolmage, 184, 741-760.

* Shared first authorship
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ABSTRACT  Over the past decade, multivariate “decoding
analyses” have become a popular alternative to traditional mass-
univariate analyses in neuroimaging research. However, a fun-
damental limitation of using decoding analyses is that it remains
ambiguous which source of information drives decoding per-
formance, which becomes problematic when the to-be-decoded
variable is confounded by variables that are not of primary inter-
est. In this study, we use a comprehensive set of simulations as
well as analyses of empirical data to evaluate two methods that
were previously proposed and used to control for confounding
variables in decoding analyses: post hoc counterbalancing and
confound regression. In our empirical analyses, we attempt to
decode gender from structural MRI data while controlling for
the confound “brain size”. We show that both methods intro-
duce strong biases in decoding performance: post hoc counter-
balancing leads to better performance than expected (i.e., posi-
tive bias), which we show in our simulations is due to the sub-
sampling process that tends to remove samples that are hard to
classify or would be wrongly classified; confound regression, on
the other hand, leads to worse performance than expected (i.e.,
negative bias), even resulting in significant below chance perfor-
mance in some realistic scenarios. In our simulations, we show
that below chance accuracy can be predicted by the variance of
the distribution of correlations between the features and the tar-
get. Importantly, we show that this negative bias disappears in
both the empirical analyses and simulations when the confound
regression procedure is performed in every fold of the cross-
validation routine, yielding plausible (above chance) model per-
formance. We conclude that, from the various methods tested,
cross-validated confound regression is the only method that ap-
pears to appropriately control for confounds which thus can be
used to gain more insight into the exact source(s) of information
driving one’s decoding analysis.
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3.1 Introduction

In the past decade, multivariate pattern analysis (MVPA) has
emerged as a popular alternative to traditional univariate analy-
ses of neuroimaging data (Haxby, 2012; Norman et al., 2006).
The defining feature of MVPA is that it considers patterns of
brain activation instead of single units of activation (i.e., vox-
els in MRI, sensors in MEG/EEG). One of the most-often used
type of MVPA is “decoding’, in which machine learning algo-
rithms are applied to neuroimaging data to predict a particu-
lar stimulus, task, or psychometric feature. For example, de-
coding analyses have been used to successfully predict various
experimental conditions within subjects, such as object cate-
gory from fMRI activity patterns (Haxby et al., 2001) and work-
ing memory representations from EEG data (LaRocque et al.,
2013), as well between-subject factors such as Alzheimer’s dis-
ease (vs. healthy controls) from structural MRI data (Cuingnet
et al., 2011) and major depressive disorder (vs. healthy con-
trols) from resting-state functional connectivity (Craddock et
al., 2009). One reason for the popularity of MVPA, and espe-
cially decoding, is that these methods appear to be more sen-
sitive than traditional mass-univariate methods in detecting ef-
fects of interest. This increased sensitivity is often attributed to
the ability to pick up multidimensional, spatially distributed rep-
resentations which univariate methods, by definition, cannot do
(Jimura & Poldrack, 2012). A second important reason to use
decoding analyses is that they allow researchers to make predic-
tions about samples beyond the original dataset, which is more
difficult using traditional univariate analyses (Hebart & Baker,
2017).

In the past years, however, the use of MVPA has been crit-
icized for a number of reasons, both statistical (Allefeld et al.,
2016; Davis et al., 2014; Gilron et al., 2017; Haufe et al., 2014)
and more conceptual (Naselaris & Kay, 2015; Weichwald et al.,
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2015) in nature. For the purposes of the current study, we focus
on the specific criticism put forward by Naselaris & Kay (2015)
, who argue that decoding analyses are inherently ambiguous in
terms of what information they use (see Popov et al., 2018 for a
similar argument in the context of encoding analyses). This type
of ambiguity arises when the classes of the to-be-decoded vari-
able systematically vary in more than one source of information
(see also Carlson & Wardle, 2015; Ritchie et al., 2017; Weichwald
etal.,, 2015). The current study aims to investigate how decoding
analyses can be made more interpretable by reducing this type
of “source ambiguity”.

To illustrate the problem of source ambiguity, consider, for
example, the scenario in which a researcher wants to decode
gender.! (male/female) from structural MRI with the aim of
contributing to the understanding of gender differences — an
endeavor that generated considerable interest and controversy
(Chekroud et al., 2016; Del Giudice et al., 2016; Glezerman,
2016; Joel & Fausto-Sterling, 2016; Rosenblatt, 2016). By per-
forming a decoding analysis on the MRI data, the researcher
hopes to capture meaningful patterns of variation in the data of
male and female participants that are predictive of the partici-
pant’s gender. The literature suggests that gender dimorphism in
the brain is manifested in two major ways (Good, Johnsrude, et
al., 2001b; O’Brien et al., 2011). First, there is a global difference
between male and female brains: men have on average about
15% larger intracranial volume than women, which falls in the
range of mean gender differences in height (8.2%) and weight
(18.7%; Gur et al., 1999; Liiders et al., 2002).> Second, brains

'The terms “gender” and “sex” are both used in the relevant research
literature. Here, we use the term gender because we refer to self-reported
identity in the data described below.

*Note that information related to global brain size persists when re-
searchers analyze the structural MRI data in a common, normalized brain
space, because spatial registration “squeezes” relatively large brains into a
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of men and women are known to differ locally: some specific
brain areas are on average larger in women than in men (e.g., in
superior and middle temporal cortex; Good, Johnsrude, et al.,
2001a) and vice versa (e.g., in frontomedial cortex; Goldstein et
al., 2001). One could argue that, given that one is interested in
explaining behavioral or mental gender differences, global dif-
ferences are relatively uninformative, as it reflects the fact than
male bodies are on average larger than female bodies (Gur et al.,
1999; Sepehrband et al., 2018). As such, our hypothetical re-
searcher is likely primarily interested in the local sources of vari-
ation in the neuroanatomy of male and female brains.

Now, supposing that the researcher is able to decode gender
from the MRI data significantly above chance, it remains unclear
on which source of information the decoder is capitalizing: the
(arguably meaningful) local difference in brain structure or the
(in the context of this question arguably uninteresting) global
difference in brain size? In other words, the data contain more
than one source of information that may be used to predict gen-
der. In the current study, we aim to evaluate methods that im-
prove the interpretability of decoding analyses by controlling for
“uninteresting” sources of information.

Partitioning effects into frue signal and
confounded signal

Are multiple sources of information necessarily problematic?
And what makes a source of information interesting or unin-
teresting? The answers to these questions depend on the partic-
ular goal of the researcher using the decoding analysis (Hebart
& Baker, 2017). In principle, multiple sources of information in
the data do not pose a problem if a researcher is only interested

smaller template, increasing voxel statistics (e.g., gray matter density in VBM
analyses), and vice versa (Douaud et al., 2007). This effect of global brain size
similarly affects functional MRI analyses (Brodtmann et al., 2009).
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in accurate prediction, but not in interpretability of the model
(Bzdok, 2017; Haufe et al., 2014; Hebart & Baker, 2017). In
brain-computer interfaces (BCI), for example, accurate predic-
tion is arguably more important than interpretability, i.e., know-
ing which sources of information are driving the decoder. Simi-
larly, if the researcher from our gender decoding example is only
interested in accurately predicting gender regardless of model
interpretability, source ambiguity is not a problem.” In most sci-
entific applications of decoding analyses, however, model inter-
pretability is important, because researchers are often interested
in the relative contributions of different sources of information
to decoding performance. Specifically, in most decoding anal-
yses, researchers often (implicitly) assume that the decoder is
only using information in the neuroimaging data that is related
to the variable that is being decoded (Ritchie et al., 2017). In this
scenario, source ambiguity (i.e., the presence of multiple sources
of information) is problematic as it violates this (implicit) as-
sumption. Another way to conceptualize the problem of source
ambiguity is that, using the aforementioned example, (global)
brain size is confounding the decoding analysis of gender. Here,
we define a confound as a variable that is not of primary inter-
est, correlates with the to-be-decoded variable (the target), and is
encoded in the neuroimaging data.

To illustrate the issue of confounding variables in the con-
text of decoding clinical disorders, suppose one is interested
in building a classifier that is able to predict whether subjects
are suffering from schizophrenia or not based on the subjects’
gray matter data. Here, the variable “schizophrenia-or-not” is
the variable of interest, which is assumed to be encoded in the
neuroimaging data (i.e., the gray matter) and can thus be de-
coded. However, there are multiple factors known to covary

3However, if accurate prediction is the only goal in this scenario, we
would argue that there are probably easier and less expensive methods than
neuroimaging to predict a participant’s gender.
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with schizophrenia, such as gender (i.e., men are more often di-
agnosed with schizophrenia than women; McGrath et al., 2008)
and substance abuse (Dixon, 1999), which are also known to af-
fect gray matter (Bangalore et al., 2008; Gur et al., 1999; Van
Haren et al., 2013). As such, the variables gender and substance
abuse can be considered confounds according to our definition,
because they are both correlated with the target (schizophrenia
or not) and are known to be encoded in the neuroimaging data
(i.e., the effect of these variables is present in the gray matter
data). Now, if one is able to classify schizophrenia with above-
chance accuracy from gray matter data, one cannot be sure
which source of information within the data is picked up by the
decoder: information (uniquely) associated with schizophre-
nia or (additionally) information associated with gender or sub-
stance abuse? If one is interested in more than mere accurate
prediction of schizophrenia, then this ambiguity due to con-
founding sources of information is problematic.

Importantly, as our definition suggests, what is or is not re-
garded as a confound is relative — it depends on whether the re-
searchers deems it of (primary) interest or not. In the aforemen-
tioned hypothetical schizophrenia decoding study, for example,
one may equally well define the severity of substance abuse as the
to-be-decoded variable, in which the variable “schizophrenia-
or-no”” becomes the confounding variable. In other words, one
researcher’s signal is another researcher’s confound. Regardless,
if decoding analyses of neuroimaging data are affected by con-
founds, the data thus contain two types of information: the “true
signal” (i.e., variance in the neuroimaging data related to the tar-
get, but unrelated to the confound) and the “confounded signal”
(i.e., variance in the neuroimaging data related to the target that
is also related to the confound; see Figure 3.1). In other words,
source ambiguity arises due to the presence of both true sig-
nal and confounded signal and, thus, controlling for confounds
(by removing the confounded signal) provides a crucial method-
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FIGURE 3.1 Visualization of how variance in brain data (X) can partitioned
into “True signal” and “Confounded signal”, depending on the correlation
structure between the brain data (X), the confound (C), and the target ().
Overlapping circles indicate a non-zero (squared) correlation between the
two variables.

ological step forward in improving the interpretability of decod-
ing analyses.

In the decoding literature, various methods have been ap-
plied to control for confounds. We next provide an overview
of these methods, highlight their advantages and disadvantages,
and discuss their rationale and the types of research settings they
can be applied in. Subsequently, we focus on two of these meth-
ods to test whether these methods succeed in controlling for the
influence of confounds.

Methods for confound control

In decoding analyses, one aims to predict a certain target vari-
able from patterns of neuroimaging data. Various methods dis-
cussed in this section are supplemented with a mathematical for-
malization; for consistency and readability, we define the nota-
tion we will use in Table 3.1.
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TABLE 3.1 Notation.

Symbol Dims.  Description

N - Number of samples (usually subjects or trials)

K - Number of neuroimaging features (e.g., voxels or
Sensors)

p - Number of confound variables (e.g., age, reaction

time, or brain size)

»

Xij N x K  The neuroimaging patterns (often called the "data
in the current article), where the subescript
i €1...Nrefers to the individual samples (rows),
and the subscript j € 1. .. K to individual features

(columns)

y N x1 The target variable (i.e., what is to be decoded)

C N x P The confound variable(s)

B K+1 The parameters estimated in a general linear model
(GLM)

w K+1 The parameters estimated in a decoding model

ey - Sample Pearson correlation coefficient between C
and y

(X.C) - Sample semipartial Pearson correlation coefficient
between X and y, controlled for C

plrey) - p-value of sample Pearson correlation between C

and y

Note: Format based on Diedrichsen and Kriegeskorte (2017). For the
correlations (r), we assume that P = 1 and thus that the correlations in the
table reduce to a scalar.

A priori counterbalancing

Ideally, one would prevent confounding variables from influenc-
ing the results as much as possible before the acquisition of the
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neuroimaging data.” One common way do this (in both tradi-
tional “activation-based” and decoding analyses) is to make sure
that potential confounding variables are counterbalanced in the
experimental design (Gorgen et al., 2017). In experimental re-
search, this would entail randomly assigning subjects to design
cells (e.g., treatment groups) such that there is no structural cor-
relation between characteristics of the subjects and design cells.
In observational designs (e.g., in the gender/brain size example
described earlier), it means that the sample is chosen such that
there is no correlation between the confound (brain size) and
observed target variable (gender). That is, given that men on av-
erage have larger brains than women, this would entail including
only men with relatively small brains and women with relatively
large brains.” The distinction between experimental and obser-
vational studies is important because the former allow the re-
searcher to randomly draw samples from the population, while
the latter require the researcher to choose a sample that is not
representative of the population, which limits the conclusions
that can be drawn about the population (we will revisit this is-
sue in the Discussion section).

Formally, in decoding analyses, a design is counterbalanced
when the confound C and the target y are statistically indepen-
dent. In practice, this often means that the sample is chosen
so that there is no significant correlation coefficient between C
and y (although this does not necessarily imply that C and y are

“In the context of behavioral data, a priori counterbalancing is often
called “matching” or a employing a “case-control design” (Cook, 2002)

>Note that the counterbalancing process is the same for both traditional
univariate (activation-based) studies and decoding studies, but the direction
of analysis is reversed in univariate (e.g., gender - brain) and decoding stud-
ies (e.g., brain > gender). As such, in univariate studies the confound (e.g.,
brain size) is counterbalanced with respect to the predictor(s) (e.g., gender)
while in decoding studies the confound (e.g., brain size) is counterbalanced
with respect to the target (e.g., gender).
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actually independent). To illustrate the process of counterbal-
ancing, let’s consider another hypothetical experiment: suppose
one wants to set up an fMRI experiment in which the goal is
to decode abstract object category (e.g., faces vs. houses) from
the corresponding fMRI patterns (cf. Haxby et al., 2001), while
controlling for the potential confounding influence of low-level
or mid-level stimulus features, such as luminance, spatial fre-
quency, or texture (Long et al.,, 2017). Proper counterbalanc-
ing would entail making sure that the images used for this par-
ticular experiments have similar values for these low-level and
mid-level features across object categories (see for details Gor-
gen et al., 2017). Thus, in this example, low-level and mid-level
stimulus features should be counterbalanced with respect to ob-
ject category, such that above chance decoding of object cate-
gory cannot be attributed to differences in low-level or mid-level
stimulus features (i.e., the confounds).

A priori counterbalancing of potential confounds is, how-
ever, not always feasible. For one, the exact measurement of a
potentially confounding variable may be impossible until data
acquisition. For example, the brain size of a participant is only
known after data collection. Similarly, Todd et al. (2013) found
that their decoding analysis of rule representations was con-
founded by response times of to the to-be-decoded trials. An-
other example of a “data-driven” confound is participant mo-
tion during data acquisition (important in, for example, decod-
ing analyses applied to data from clinical populations such as
ADHD; Yu-Feng et al., 2007). In addition, a priori counterbal-
ancing of confounds may be challenging because of the limited
size of populations of interest. Especially in clinical research set-
tings, researchers may not have the luxury of selecting a coun-
terbalanced sample due to the small number of patient subjects
available for testing. Lastly, researchers may simply discover
confounds after data acquisition.
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Given that a priori counterbalancing is not possible or un-
desirable in many situations, it is paramount to explore the pos-
sibilities of controlling for confounding variables after data ac-
quisition for the sake of model interpretability, which we discuss
next.

Include confounds in the data

One perhaps intuitive method to control for confounds in de-
coding analyses is to include the confound(s) in the data (i.e., the
neuroimaging data, X; see, e.g., Sepehrband et al., 2018) used by
decoding model. That is, when applying a decoding analysis to
neuroimaging data, the confound is added to the data as if it were
another voxel (or sensor, in electrophysiology). This intuition
may stem from the analogous situation in univariate (activation-
based) analyses of neuroimaging data, in which confounding
variables are controlled for by including them in the design ma-
trix together with the stimulus/task regressors. For example, in
univariate analyses of functional MRI, movement of the partic-
ipant is often controlled for by including motion estimates in
the design matrix of first-level analyses (Johnstone et al., 2006);
in EEG, some control for activity due to eye-movements by in-
cluding activity measured by concurrent electro-oculography as
covariates in the design-matrix (Parra et al., 2005). Usually, the
general linear model is then used to estimate each predictor’s
influence on the neuroimaging data. Importantly, the param-
eter estimates (Z@) are often interpreted as reflecting the unique
contribution® of each predictor variable, independent from the
influence of the confound.

SHowever, parameter estimates only reflect unique variance when ordi-
nary, weighted, or generalized least squares is used to find the model param-
eters. Other (regularized) linear models, such as ridge regression or LASSO,
are not guaranteed to yield parameters that explain unique proportions of
variance.
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Contrary to general linear models as employed in univariate
(activation-based) analyses, including confound variables in the
data as predictors for decoding models is arguably problematic.
If a confound is included in the data in the context of decod-
ing models, the parameter estimates of the features (often called
“feature weights”, w, in decoding models) may be corrected for
the influence of the confound, but the model performance (usu-
ally measured as explained variance, R%, or classification accu-
racy; Hebart & Baker, 2017) is not. That is, rather than provid-
ing an estimate of decoding performance “controlled for” a con-
found, one obtains a measure of performance when explicitly in-
cluding the confound as an interesting source of variance that the
decoder is allowed to use. This is problematic because research
using decoding analyses generally does not focus on parameter
estimates but on statistics of model performance. Model per-
formance statistics (e.g., R?, classification accuracy) alone can-
not disentangle the contribution of different sources of informa-
tion as they only represent a single summary statistic of model
fit (Ritchie et al., 2017). One might, then, argue that addition-
ally inspecting feature weights of decoding models may help in
disambiguating different sources of information (Sepehrband et
al., 2018). However, it has been shown that feature weights can-
not be reliably mapped to specific sources of information, i.e., as
being task-related or confound-related (e.g., features with large
weights may be completely uncorrelated with the target variable;
Haufe et al., 2014; Hebart & Baker, 2017). As such, it does not
make sense to include confounds in the set of predictors when
the goal is to disambiguate the different sources of information
in decoding analyses.

Recently, another approach similar to including confounds
in the data has been proposed, which is based on the idea of
a dose-response curve (Alizadeh et al., 2017). In this method,
instead of adding the confound(s) to the model directly, the rel-
ative contribution of true and confounded signal is systemat-
ically controlled. The authors show that this approach is able
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to directly quantify the unique contribution of each source of
information, thus effectively controlling for confounded signal.
However, while sophisticated in its approach, this method only
seems to work for categorical confounds, as it is difficult (if not
impossible) to systematically vary the proportion of confound-
related information when dealing with continuous confounds or
when dealing with more than one confound.

Control for confounds during pattern estimation

Another method that was used in some decoding studies on
functional MRI data aims to control for confounds in the initial
procedure of estimating activity patterns of the to-be-decoded
events, by leveraging the ability of the GLM to yield parame-
ter estimates reflecting unique variance (Woolgar et al., 2014).
In this method, an initial “first-level” (univariate) analysis mod-
els the fMRI time series (s) as a function of both predictors-of-
interest (X) and the confounds (C), often using the GLM’:

s=XB . +CB, +e (3.1)

Then, only the estimated parameters (B, or normalized pa-
rameters, such as t-values or z-values) corresponding to the
predictors-of-interest ([S’x) are used as activity estimates (i.e.,
the used for predicting the target y) in the subsequent decod-
ing analyses. This method thus takes advantage of the shared
variance partitioning in the pattern estimation step to control
for potential confounding variables. However, while elegant
in principle, this method is not applicable in between-subject
decoding studies (e.g., clinical decoding studies; Waarde et al.,
2014; Cuingnet et al., 2011), in which confounding variables

"Note that X and C, here, refer to (usually HRF-convolved) predictors of
the time series signal (s) for a single voxel. In the rest of the article, X and C
refer to features that are defined across samples (not time).

57



3.1. Introduction

are defined across subjects, or in electrophysiology studies, in
which activity patterns do not have to be” estimated in a first-
level model, thus limiting the applicability of this method.

Post hoc counterbalancing of confounds

When a priori counterbalancing is not possible, some have ar-
gued that post hoc counterbalancing might control for the influ-
ence of confounds (Rao et al., 2017, pp. 24, 38). In this method,
given that there is some sample correlation between the target
and confound (r¢, # 0) in the entire dataset, one takes a subset
of samples in which there is no empirical relation between the
confound and the target (e.g., when ¢, ~ 0). In other words,
post hoc counterbalancing is a way to decorrelate the confound
and the target by subsampling the data. Then, subsequent de-
coding analysis on the subsampled data can only capitalize on
true signal, as there is no confounded signal anymore (see Figure
3.2). While intuitive in principle, we are not aware of whether
this method has been evaluated before and whether it yields un-
biased performance estimates.

Confound regression

The last and perhaps most common method to control for con-
founds is removing the variance that can be explained by the
confound (i.e., the confounded signal) from the neuroimaging
data directly (Abdulkadir et al., 2014; Dukart et al., 2011; Kostro
etal, 2014; Rao etal., 2017; Todd et al., 2013) — a process we re-
ter to as confound regression (also known as “image correction”;

8Note that, technically, one could use the “Control for confounds dur-
ing pattern estimation” method in electrophysiology as well, by first fitting a
univariate model explaining the neuroimaging data (Xj forj = 1...K) asa
function of both the target (y) and the confound (C) and subsequently only
using the parameter estimates of the target-predictor ( B ) as patterns in the
subsequent decoding analysis.
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FIGURE 3.2 A schematic visualization how the main two confound control
methods evaluated in this article deal with the “confounded signal”, making
sure decoding models only capitalize on the “true signal”.

Rao et al.,, 2017). In this method, a (usually linear) regression
model is fitted on each feature in the neuroimaging data (i.e.,
a single voxel or sensor) with the confound(s) as predictor(s).
Thus, each feature in the neuroimaging data X is modelled as a
linear function of the confounding variable(s), C:

X;=CB+e (3.2)

We can estimate the parameter(s) for feature using, for ex-
ample, ordinary least squares as follows (for an example using a
different model, see Abdulkadir et al., 2014):

P, T ~\—1,-~T
[3]. = (C'C)'C'X; (3.3)
Then, to remove the variance of (or “regress out”) the con-

found from the neuroimaging data, we can subtract the variance

in the data associated with confound (CBJ.) from the original
data:
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)(j,corr = )(] - CB] (3.4)

In which Xj .o,y represents the neuroimaging feature X; from
which all variance of the confound is removed (including the
variance shared with y, i.e., the confounded signal; see Figure
3.2). When subsequently applying a decoding analysis on this
corrected data, one can be sure that the decoder is not capital-
izing on signal that is correlated with the confound, which thus
improves interpretability of the decoding analysis.

Confound regression has been applied in several decoding
studies. Todd et al. (2013) were, as far as the current authors
are aware, the first to use this method to control for a confound
(in their case, reaction time) that was shown to correlate with
their target variable (rule A vs. rule B). Notably, they both re-
gressed out reaction time from the first-level time series data
(similar to the “Control for confounds during pattern estima-
tion” method) and regressed out reaction time from the trial-by-
trial activity estimates (i.e., confound regression as described in
this section). They showed that controlling for reaction time in
this way completely eliminated the above chance decoding per-
formance. Similarly, Kostro et al. (2014) observe a substantial
drop in classification accuracy when controlling for scanner site
in the decoding analysis of Huntington’s disease, but only when
scanner site and disease status were actually correlated. Lastly,
Rao etal. (2017) found that, in contrast to Kostro et al. and Todd
et al., confound regression yielded similar (or slightly lower, but
still significant) performance compared to the model without
confound control, but it should be noted that this study used
a regression model (instead of a classification model) and evalu-
ated confound control in the specific situation when the training
set is confounded, but the test set is not.” In sum, while con-
found regression has been used before, it has yielded variable

“Note that we did not discuss studies that implement a different con-
found regression procedure (e.g., Abdulkadir et al., 2014; Dukartetal., 2011),
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results, possibly due to slightly different approaches and differ-
ences in the correlation between the confounding variable and
the target.

Current study

In summary, multiple methods have been proposed to deal with
confounds in decoding analyses. Often, these methods have spe-
cific assumptions about the nature or format of the data (such as
“A priori counterbalancing” and “Confound control during pat-
tern estimation”), differ in their objective (e.g., prediction vs. in-
terpretation, such as in “Include confounds in the data”), or have
yielded variable results (such as “Confound regression”). There-
fore, given that we are specifically interested in interpreting de-
coding analyses, the current study evaluates the two methods
that are applicable in most contexts: post hoc counterbalancing
and confound regression (but see Supplementary Materials for
a tentative evaluation of this method based on simulated func-
tional MRI data). In addition to these two methods, we propose
a third method — a modified version of confound regression —-
which we show yields plausible, seemingly unbiased, and inter-
pretable results.

To test whether these methods are able to effectively con-
trol for confounds and whether they yield plausible results, we
apply them to empirical data, as well as to simulated data in
which the ground truth with respect to the signal in the data (i.e.,
the proportion of true signal and confounded signal) is known.
For our empirical data, we enact the previously mentioned hy-
pothetical study in which participant gender is decoded from

in which confound regression is only estimated on the samples from a single
class of the target variable (e.g., in our gender decoding example, this would
mean that confound regression models are only estimated on the data from
male, or female, subjects). As this form of confound regression does not dis-
ambiguate the sources of information driving the decoder, it is not discussed
further in this article.
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structural MRI data. We use a large dataset (N = 217) of struc-
tural MRI data and try to predict subjects’ gender (male/female)
from gray and white matter patterns while controlling for the
confound of “brain size” using the aforementioned methods,
which we compare to a baseline model in which confounds are
not controlled for. Given the previously reported high correla-
tions between brain size and gender (Barnes et al., 2010; Smith &
Nichols, 2018), we expect that successfully controlling for brain
size yields lower decoding performance than using uncorrected
data, but not below chance level. Note that higher decoding per-
formance after controlling for confounds is theoretically possi-
ble when the correlation between the confound and variance in
the data unrelated to the target (e.g., noise) is sufficiently high
to cause suppressor effects (see Figure 1 in Haufe et al., 2014;
Hebart & Baker, 2017). However, because our confound, brain
size, is known to correlate strongly with our target gender (ap-
prox. r = 0.63; Smith & Nichols, 2018), it is improbable that
it also correlates highly with variance in brain data that is unre-
lated to gender. It follows then that classical suppression effects
are unlikely and we thus expect lower model performance after
controlling for brain size.

However, shown in detail below, both post hoc counterbal-
ancing and confound regression lead to unexpected results in
our empirical analyses: counterbalancing fails to reduce model
performance while confound regression consistently yields low
model performance up to the point of significant below chance
accuracy. In subsequent analyses of simulated data, we show
that both methods lead to biased results: post hoc counterbal-
ancing yields inflated model performance (i.e., positive bias)
because subsampling selectively selects a subset of samples in
which features correlate more strongly with the target variable,
suggesting (indirect) circularity in the analysis (Kriegeskorte et
al., 2009). Furthermore, our simulations show that negative
bias (including significant below chance classification) after con-
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found regression on the entire dataset is due to reducing the sig-
nal below what is expected by chance (Jamalabadi et al., 2016),
which we show is related to and can be predicted by the standard
deviation of the empirical distribution of correlations between
the features in the data and the target. We propose a minor but
crucial addition to the confound regression procedure, in which
we cross-validate the confound regression models (which we call
“cross-validated confound regression”, CVCR), which solves the
below chance accuracy issue and yields plausible model perfor-
mance in both our empirical and simulated data.

3.2 Methods

Data

For the empirical analyses, we used voxel-based morphome-
try (VBM) data based on T1-weighted scans and tract-based
spatial statistics (TBSS) data based on diffusion tensor images
from 217 participants (122 women, 95 men), acquired with a
Philips Achieva 3T MRI-scanner and a 32-channel head coil at
the Spinoza Centre for Neuroimaging (Amsterdam, The Nether-
lands).

VBM acquisition & analysis

The T1-weighted scans with a voxel size of 1.0 x 1.0 x 1.0 mm
were acquired using 3D fast field echo (TR: 8.1 ms, TE: 3.7
ms, flip angle: 8°, FOV: 240 x 188 mm, 220 slices). We used
“FSL-VBM” protocol (Douaud et al., 2007) from the FSL soft-
ware package (version 5.0.9; Smith et al., 2004); using default
and recommended parameters (including non-linear registra-
tion to standard space). The resulting VBM-maps were spa-
tially smoothed using a Gaussian kernel (3 mm FWHM). Subse-
quently, we organized the data in the standard pattern-analysis
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format of a 2D (N x K) array of shape 217 (subjects) x 412473
(non-zero voxels).

TBSS acquisition & analysis

Diftusion tensor images with a voxel size of 2.0 x 2.0 x 2.0 mm
were acquired using a spin-echo echo-planar imaging (SE-EPI)
protocol (TR: 7476 ms, TE: 86 ms, flip angle: 90°, FOV: 224 x
224 mm, 60 slices), which acquired a single b = 0 (non-diffusion-
weighted) image and 32 (diffusion-weighted) b = 1000 images.
All volumes were corrected for eddy-currents and motion (us-
ing the FSL command “eddy_correct”) and the non-diffusion-
weighted image was skullstripped (using FSL-BET with the frac-
tional intensity threshold set to 0.3) to create a mask that was
subsequently used in the fractional anisotropy (FA) estimation.
The FA-images resulting from the diffusion tensor fitting pro-
cedure were subsequently processed by FSLs tract-based spa-
tial statistics (TBSS) pipeline (Smith et al., 2006), using the rec-
ommended parameters (i.e., non-linear registration to FSLs 1
mm FA image, construction of mean FA-image and skeletonized
mean FA-image based on the data from all subjects, and a thresh-
old of 0.2 for the skeletonized FA-mask). Subsequently, we or-
ganized the resulting skeletonized FA-maps into a 2D (N x K)
array of shape 217 (subjects) x 128340 (non-zero voxels).

Brain size estimation

To estimate the values for our confound, global brain size, we
calculated for each subject the total number of non-zero voxels
in the gray matter and white matter map resulting from the seg-
mentation step in the FSL-VBM pipeline (using FSLs segmen-
tation algorithm “FAST”; Zhang et al., 2001). The number of
non-zero voxels from the gray matter map was used as the con-
found for the VBM-based analyses and the number of non-zero
voxels from the white matter map was used as the confound for
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the TBSS-based analyses. Note that brain size estimates from to-
tal white matter volume and total gray matter volume correlated
strongly, 7(216) = 0.93, p < 0.00L

Data and code availability

In the Github repository corresponding to this article
(https://github.com/lukassnoek/MVCA), we included a script
(download_data.py) to download the data (the 4D VBM and
TBSS nifti-images as well as the non-zero 2D samples x features
arrays). The repository also contains detailed Jupyter notebooks
with the annotated empirical analyses and simulations reported
in this article.

Decoding pipeline

All empirical analyses and simulations used a common decod-
ing pipeline, implemented using functionality from the scikit-
learn Python package for machine learning (Abraham et al.,
2014; Pedregosa et al.,, 2011). This pipeline included univari-
ate feature selection (based on a prespecified amount of vox-
els with highest univariate difference in terms of the ANOVA
F-statistic), feature-scaling (ensuring zero mean and unit stan-
dard deviation for each feature), and a support vector classifier
(SVC) with a linear kernel, fixed regularization parameter (C =
1), and sample weights set to be inversely proportional to class
frequency (to account for class imbalance). In our empirical
analyses, we evaluated model performance for different num-
bers of voxels (as selected by the univariate feature selection).
For our empirical analyses, we report model performance as the
F, score, which is insensitive to class imbalance (which, in ad-
dition to adjusted sample weights, prevents the classifier from
learning the relative probabilities of target classes instead of rep-
resentative information in the features; see also Supplementary
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Figure B.14 for a replication of part of the results using AU-
ROC, another metric that is insensitive to class imbalance). At
chance level classification, the F; score is expected to be 0.5. For
our simulations, in which there is no class imbalance, we report
model performance using accuracy scores. In figures showing
error bars around the average model performance scores, the
error bars represent 95% confidence intervals estimated using
the “bias-corrected and accelerated” (BCA) bootstrap method
using 10,000 bootstrap replications (Efron, 1987). For calculat-
ing BCA bootstrap confidence intervals, we used the implemen-
tation from the open source “scikits.bootstrap” Python pack-
age (https://github.com/cgevans/scikits-bootstrap). Statistical
significance was calculated using non-parametric permutation
tests, as implemented in scikit-learn, with 1000 permutations
(Ojala & Garriga, 2010).

Evaluated methods for confound control
Post hoc counterbalancing

We implemented post hoc counterbalancing in two steps. First,
to quantify the strength of relation between the confound and
the target in our dataset, we estimated the point-biserial corre-
lation coefficient between the confound, C (brain size), and the
target, y (gender) across the entire dataset (including all samples
i =1...N). Because of both sampling noise and measurement
noise, sample correlation coefficients vary around the popula-
tion correlation coefficient and are thus improbable to be 0 ex-
actly."’ Therefore, in the next step, we subsampled the data until

For continuous confounds, it is practically impossible to achieve a cor-
relation with the target of exactly zero, which is the reason we subsample
until it is smaller than a prespecified threshold. For categorical confounds,
however, a correlation between the confound and the target of exactly zero
is possible (this amounts to equal proportions of levels of ¢ within each class
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the correlation coeflicient between and becomes non-significant
at some significance threshold a: p(r¢,) > a.

In our analyses, we used an « of 0.1. Note that this is more
“strict”! than the conventionally used threshold (« = 0.05), but
given that decoding analyses are often more sensitive to signal in
the data (whether it is confounded or true signal), we chose to
err on the safe side and counterbalance the data using a relatively
strict threshold of « = 0.1.

Subsampling was done by iteratively removing samples that
contribute most to the correlation between the confound and
the target until the correlation becomes non-significant. In our
empirical data in which brain size is positively correlated with
gender (coded as male = 1, female = 0) this amounted to itera-
tively removing the male subject with the largest brain size and
the female subject with the smallest brain size. This procedure
optimally balances (1) minimizing the correlation between tar-
get and confound and (2) maximizing sample size. As an al-
ternative to this “targeted subsampling”, we additionally imple-
mented a procedure which draws random subsamples of a given
sample size until it finds a subsample with a non-significant cor-
relation coefficient. If such a subsample cannot be found after
10,000 random draws, sample size is decreased by 1, which is
repeated until a subsample is found. This procedure resulted in
much smaller subsamples than the targeted subsampling pro-
cedure (i.e., a larger power loss) since the optimal subsample is
hard to find randomly.”” In the analyses below, therefore, we

of y; Gorgen et al,, 2017), even necessary, because it is impossible to find a
(K-fold) cross-validation partitioning in which each split is counterbalanced
w.r.t. the confound if the correlation in the entire dataset between the target
and the confound is not zero.

'We refer to a relatively high a as “strict”, here, because we use it here for
the purpose of demonstrating no effect.

20ne could run the “random subsampling” procedure with more than
10,000 draws in order to reduce the aforementioned power loss; but in the
extreme, this would result in the same optimal subsample that can be found
much faster by targeted subsampling.
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used the targeted subsampling procedure. Importantly, even
with extreme power loss, random subsampling can cause the
same biases as will be described for the targeted subsampling
method below (cf. Figure 3.8 and Figure 3.10 and Supplemen-
tary Figures B.13 and B.14).

Then, given that the subsampled dataset is counterbal-
anced with respect to the confound, a random stratified K-
fold cross-validation scheme is repeatedly initialized until a
scheme is found in which all splits are counterbalanced as
well (cf. Gorgen et al., 2017). This particular counterbalanced
cross-validation scheme is subsequently used to cross-validate
the MVPA pipeline. We implemented this post hoc counter-
balancing method as a scikit-learn-style cross-validator class,
available from the aforementioned Github repository (in the
counterbalance.py module).

Confound regression

In our empirical analyses and simulations, we tested two dif-
ferent versions of confound regression, which we call “whole-
dataset confound regression” (WDCR) and “cross-validated
confound regression” (CVCR). In WDCR, we regressed out the
confounds from the predictors from the entire dataset at once,
i.e., before entering the iterative cross-validated MVPA pipeline
(the approach taken by Abdulkadir et al., 2014; Dubois et al.,
2018; Kostro et al., 2014; Todd et al., 2013). Note that we can do
this for all K voxels at once using the closed-form OLS solution,
in which we first estimated the parameters Bc:

B. = (C'C)"'C"x (3.5)
where C is an array in which the first column contained an

intercept and the second column contained the confound brain
size. Accordingly, B is an 2 x K array. We then removed the
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variance associated with the confound from our neuroimaging
data as follows:

Xeorr = X — CBC (36)

Now, X, is an array with the same shape as the original X
array, but without any variance that can be explained by con-
found, C (i.e., X is residualized with regard to C).

In our proposed cross-validated version of confound regres-
sion (which was mentioned but not evaluated by Rao et al., 2017,
p. 25), “CVCR’, we similarly regressed out the confounds from
the neuroimaging data, but instead of estimating Bc on the en-
tire dataset, we estimated this within each fold of training data

(Xtrain ) :

/3 C,train = ( Ctj;’ain Ctr ain) ! CtT;ainXtrain (3 . 7)

And we subsequently used these parameters (Bc train) 1O T€-
move the variance related to the confound from both the train
set (Xtrain and Ctrain):

Xtrain,corr = Xirain — Ctrain[))(j,train (38)
and the test set (Xiest and Ciegr):

Xtest,corr = Xiest — Ctestﬁqtest (39)

Thus, essentially, CVCR is the cross-validated version of
WDCR. One might argue that regressing the confound from the
train set only, i.e., implementing only equation (3.8), not equa-
tion (3.9), is sufficient to control for confounds as it prevents the
decoding model from relying on signal related to the confound.
We evaluated this method and report the corresponding results
in Supplementary Figure B.10.
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We implemented these confound regression techniques as a
scikit-learn compatible transformer class, available in the open-
source skbold Python package (https://github.com/lukassnoek/
skbold) and in the aforementioned Github repository.

Control for confounds during pattern estimation

In addition to post hoc counterbalancing and confound regres-
sion, we also evaluated how well the “control for confounds dur-
ing pattern estimation” method controls for the influence of
confounds in decoding analyses of (simulated) fMRI data. The
simulation methods and results can be found in the Supplemen-
tary Materials.

Analyses of simulated data

In addition to the empirical evaluation of counterbalancing and
confound regression in the gender decoding example, we ran
three additional analyses on simulated data. First, we inves-
tigated the efficacy of the three confound control methods on
synthetic data with known quantities of “true signal” and “con-
founded signal’, in order to detect potential biases. Second, we
ran additional analyses on simulated data to investigate the posi-
tive bias in model performance observed after post hoc counter-
balancing. Third, we ran additional analyses on simulated data
to investigate the negative bias in model performance observed
after WDCR. In the Supplementary Materials, we investigate
whether the confound regression results generalize to (simu-
lated) functional MRI data (Supplementary Figure B.1 and B.2).

Efficacy analyses

In this simulation, we evaluated the efficacy of the three meth-
ods for confound control on synthetic data with a prespecified
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correlation between the confound and the target, r,, and vary-
ing amounts of “confounded signal” (i.e., the explained variance
in y driven by shared variance between X and y). These simula-
tions allowed us to have full control over (and knowledge of) the
influence of both signal and confound in the data, and thereby
help us diagnose biases associated with post hoc counterbalanc-
ing and confound regression.

Specifically, in this efficacy analysis, we generated hypothet-
ical data sets holding the correlation coeflicient between C and
y constant, while varying the amount of true signal and con-
founded signal. We operationalized true signal as the squared
semipartial Pearson correlation between y and each feature in X,
controlled for C. As such, we will refer to this term as signal R*:

signal R* = ’i(xc) (3.10)

In the simulations reported and shown in the main article,
we used r¢, = 0.65, which corresponds to the observed correla-
tion between brain size and gender in our dataset. To generate
synthetic data with this prespecified structure, we generated (1)
a data matrix X of shape N X K, (2) a target variable y of shape
N1, and (3) a confound variable C of shape N x P. For all simu-
lations, we used the following parameters: N = 200, K = 5, and
P =1 (i.e., a single confound variable). We generated y as a cat-
egorical variable with binary values, y € {0, 1}, with equal class
probabilities (i.e., 50%), given that most decoding studies focus
on binary classification. We generated C as a continuous ran-
dom variable drawn from a standard normal distribution. We
generated each feature X; as a linear combination of y and C plus
Gaussian noise. Thus, for each predictor j = 1... Kin X;:

Xj=By+PBcC+ee~N(0,y) (3.11)

in which 8, represented the weight given to y, and f rep-
resented the weight given to C in the generation of the feature
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X;, and (0, y) is the normal distribution with zero mean and
standard deviation y. The parameters , and . were both ini-
tialized with a value of 1. First, if the difference between the to-
tal variance explained and the sum of the desired signal R* and
confound R? values was larger than 0.01, the standard deviation
of the normal distribution from which the errors were drawn
(i.e., y) was adjusted (decreased with 0.01 when the total R* is
too low, increased with 0.01 when the total R? is too high), after
which was generated again. This process was iterated until the
target total R* value is found. Then, the total variance explained
was partitioned into confound R* and signal R%. If one or both of
these values differed from the targeted values by more than 0.01,
the generative parameters § and f . were adjusted: if signal R*is
too low, was increased with 0.01, and decreased with 0.01 other-
wise. If confound R” is too low, f3. was increased with 0.01, and
decreased with 0.01 otherwise. After adjusting these parame-
ters, X; was generated again. This process was iterated until the
data contain the desired “true signal” and “confounded signal”

We evaluated the different methods for confound control for
two values of signal R* (0.004, representing plausible null data,"”
and 0.1, representing a plausible true effect) and a range of con-
found R? values (in steps of 0.05: 0.00,0.05,0.10,...,0.35).
This simulation was iterated 10 times (with different partitions
of the folds) to ensure the results were not influenced by random
noise. Importantly, the specific scenario in which confound R*
equals 0, which represents data without any confounded signal
(rix), served as “reference model performance” to which we can
compare the efficacy the confound control methods. This com-
parison allowed us to detect potential biases.

B3Note that plausible null data do not reflect a signal R? of 0, because
this statistic is biased towards values larger than 0 (because it represents a
squared number) when dealing with noisy data, hence our choice of signal
R* = 0.004.
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After the data were generated, a baseline model (no con-
found control) and the three methods outlined above (post hoc
counterbalancing, WDCR, and CVCR) were applied to the sim-
ulated data using the standard pipeline described in the Decod-
ing pipeline section (but without univariate feature selection)
and compared to the reference performance.

Analysis of positive bias after post hoc counterbalancing

As detailed below, post hoc counterbalancing did not lead to
the expected decrease in model performance; instead, there ap-
peared to be a trend towards an increase in model performance.
To further investigate the cause of this unexpected result, we
simulated a multivariate normal dataset with three variables, re-
flecting our data (X), target (y), and confound (C), with 1000
samples (N) and a single feature (K = 1). We iterated this data
generation process 1000 times and subsequently selected the
dataset which yielded the largest (positive) difference between
model performance after post hoc counterbalancing versus no
confound control. In other words, we used the dataset in which
the counterbalancing issue was most apparent. While not nec-
essarily representative of typical (neuroimaging) datasets, this
process allowed us to explain and visualize how it is possible that
model performance increases after counterbalancing the data.
To generate data from a multivariate normal distribution,
we first generated variance-covariance matrices with unit vari-
ance for all variables, so that covariances can be interpreted as
correlations. The covariances in the matrix were generated as
pairwise correlations (ryx, rcy, 7cX), each sampled from a uni-
form distribution with range [—0.65, 0.65]. We generated data
using such prespecified correlation structure because the rela-
tive increase in model performance after counterbalancing did
not appear to occur when generating completely random (nor-
mally distributed) data. Moreover, we restricted the range of the
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uniform distribution from which the pairwise correlations are
drawn to [—0.65, 0.65] because a larger range can result in co-
variance matrices that are not positive-semidefinite. After gen-
erating the three variables, we binarized the target variable (y)
using a mean-split (y = 0if y < y, y = 1 otherwise) to frame
the analysis as a classification problem rather than a regression
problem.

We then subsampled the selected dataset using our post hoc
counterbalancing algorithm and subsequently ran the decod-
ing pipeline (without univariate feature selection) on the sub-
sampled (“retained”) data in a 10-fold stratified cross-validation
scheme. Notably, we cross-validated our fitted pipeline not only
to the left-out retained data, but also to the data that did not
survive the subsampling procedure (the rejected data; see Fig-
ure 3.3). Across the 10 folds, we kept track of two statistics from
the retained and rejected samples: (1) the classification perfor-
mance, and (2) the signed distance to the decision boundary.
Negative distances in binary classification (in simple binary clas-
sification with y € {0,1}) reflect a prediction of the sample as
y = 0, while positive distances reflect a prediction of the sample
as y = L. As such, a correctly classified sample of class 0 has a
negative distance from the decision boundary, while a correctly
classified sample of class 1 has a positive distance from the deci-
sion boundary. Here, however, we wanted to count the distance
of samples that are on the “incorrect” side of the decision bound-
ary as negative distances, while counting the distance of samples
that are on the “correct” side of the decision boundary as positive
distances. To this end, we used a “re-coded” version of the tar-
get variable (y* = —1ify = 0, y* = 1 otherwise) and multiplied
it with the distance. Consequently, negative distances of correct
samples of condition 0 become positive and positive distances
of incorrect samples of condition 0 become negative (by multi-
plying them by —1). As such, we calculated the signed distance
from the decision boundary (§;) for any sample i as:
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8 =y (w'X; + b) (3.12)

in which w refers to the feature weights (coefficients) and b
refers to the intercept term. Any differences in these two statis-
tics (proportion correctly classified and signed distance to the
classification boundary) between the retained and rejected sam-
ples may signify biases in model performance estimates (i.e., bet-
ter cross-validated model performance on the retained data than
on the rejected data would confirm positive bias, as it indicates
that subsampling tends to reject hard-to-classify samples). We
applied this analysis also to the empirical data (separately for the
different values of K) to show that the effect of counterbalancing,
as demonstrated using simulated data, also occurs in the empir-
ical data.

Analysis of negative bias after WDCR

As also detailed below, WDCR can lead to significantly below
chance accuracy. To investigate the cause of this below chance
performance (and to demonstrate that CVCR does not lead to
such results), we performed two follow-up simulations. The first
follow-up simulation shows that the occurrence of below chance
accuracy depends on the distribution of feature-target correla-
tions (r,x; see for a similar argument Jamalabadi et al., 2016),
and the second follow-up simulation shows that WDCR artifi-
cially narrows this distribution. This artificial narrowing of the
distribution is exacerbated both by an increasing number of fea-
tures (K), as well as higher correlations between the target and
confound (rgy).

In the first simulation, we simulated random null data
(drawn from a standard normal distribution) with 100 sam-
ples (N) and 200 features (K), as well as a binary target feature
(y € {0,1}). We then calculated the cross-validated prediction
accuracy using the standard pipeline (without univariate feature
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Subsampling until Ie,> @

K-fold cross-validation

F1GURE 3.3 Visualization of method to evaluate whether counterbalancing
yields unbiased cross-validated model performance estimates.

selection) described in the Decoding pipeline section; we iterate
this process 500 times. Then, we show that the variance of the
cross-validated accuracy is accurately predicted by the standard
deviation (i.e., “width”) of the distribution of correlations be-
tween the features and the target (r,x; with j = 1...K), which
we will denote by sd(r,x). Importantly, we show that below
chance accuracy likely occurs when the standard deviation of
the feature-target correlation distribution is lower than the stan-
dard deviation of the sampling distribution of the Pearson corre-
lation coefficient parameterized with the same number of sam-
ples (N = 200) and the same effect size (i.e., p = 0, because we
simulated random null data). The sampling distribution of the
Pearson correlation coefficient is described by Kendall & Stuart
(1973). When p = 0 (as in our simulations), the equation is as
follows:
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firN) = (1= (B 0)
where B(a, b) represents the Beta-function.
Then, in a second simulation, we similarly simulated null

data as in the previous simulation, but now we also generate a
continuous confound (C) with a varying correlation with the tar-
get (ry € {0.0,0.1,0.2,...,1.0}). Before subjecting the data to
the decoding pipeline, we regressed out the confound from the
data (i.e., WDCR). We did this for different numbers of features
(K € {1,5,10,50,100,500,1000}). Then, we applied CVCR on
the simulated data as well for comparison.

(3.13)

3.3 Results

Influence of brain size

Before evaluating the different methods for confound control,
we determined whether brain size is truly a confound given our
proposed definition (“a variable that is not of primary interest,
correlates with the target, and is encoded in the neuroimaging
data”). We evaluated the relationship between the target and the
confound in two ways. First, we calculated the (point-biserial)
correlation between gender and brain size, which was signifi-
cant for both the estimation based on white matter, r(216) =
.645,p < 0.001, and the estimation based on grey matter,
r(216) = .588,p < 0.001, corroborating the findings by Smith
& Nichols (2018). Second, as recommended by Gorgen et al.
(2017), who argue that the potential influence of confounds can
be discovered by running a classification analysis using the con-
found as the (single) feature predicting the target, we ran our
decoding pipeline (without univariate feature selection) using
brain size as a single feature to predict gender. This analysis
yielded a mean classification performance (F; score) of 0.78 (SD
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FIGURE 3.4 A) Model performance when using brain size to predict gender
for both brain-size estimated from grey matter (left) and from white matter
(right). Points in yellow depict individual F; scores per fold in the 10-fold
cross-validation scheme. Whiskers of the box plot are 1.5x the interquar-
tile range. B) Distributions of observed correlations between brain size and
voxels (rxc), overlayed with the analytic sampling distribution of correlation
coefficients when p = 0 and N = 217, for both the VBM data (left) and
TBSS data (right). Density estimates are obtained by kernel density esti-
mation with a Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth
selection.

= .10) when using brain size estimated from white matter and
0.81 (SD = .09) when using brain size estimated from gray mat-
ter, which are both significant with p < 0.001 (see Figure 3.4A).

To estimate whether brain size is encoded in the neuroimag-
ing data, we compared the distribution of bivariate correlation
coefficients (of each voxel with brain size) with the sampling dis-
tribution of correlation coefficients when p = 0 and N = 217
(see section Analysis of negative bias after WDCR for details).
Under the null hypothesis that there are no correlations between
brain size and voxel intensities, each individual correlation co-
efficient between a voxel and the confound can be regarded as
an independent sample with N = 217 (ignoring correlations be-
tween voxels for simplicity). Because K is very large for both
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the VBM and TBSS data, the empirical distribution of correla-
tion coefficients should, under the null hypothesis, approach the
analytic distribution of correlation coefficients parametrized by
p = 0 and N = 217. Contrarily, the density plots in Fig. 3.4B
clearly show that the observed correlation coefficients distribu-
tion does not follow the sampling distribution (with both an in-
crease in variance and a shift of the mode). This indicates that
at least some of the correlation coefficients between voxel inten-
sities and brain size are extremely unlikely under the null hy-
pothesis. Note that this interpretation is contingent on the as-
sumption that the relation between brain size and VBM/TBSS
data is linear. In the Supplementary Materials and Results (Sup-
plementary Figures B.7-B.9), we provide some evidence for the
validity of this assumption.

Baseline model: no confound control

In our baseline model on the empirical data, for different num-
bers of voxels, we predicted gender from structural MRI data
(VBM and TBSS) without controlling for brain size (see Figure
3.5). The results show significant above chance performance of
the MVPA pipeline based on both the VBM data and the TBSS
data. All performance scores averaged across folds were signifi-
cant (p < 0.001).

These above chance performance estimates replicate previ-
ous studies on gender decoding using structural MRI data (Del
Giudice et al., 2016; Rosenblatt, 2016; Sepehrband et al., 2018)
and will serve as a baseline estimate of model performance to
which the confound control methods will be compared.

In the next three subsections, we will report the results
from the three discussed methods to control for confounds:
post hoc counterbalancing, whole-dataset confound regression
(WDCR), and cross-validated confound regression (CVCR).
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FIGURE 3.5 Baseline scores using the VBM (left) and TBSS (right) data
without any confound control. Scores reflect the average F; score across
10 folds; error bars reflect 95% confidence intervals. The dashed black line
reflect theoretical chance-level performance and the dashed orange line
reflects the average model performance when only brain size is used as a
predictor for reference; Asterisks indicates significant performance above
chance: ™ =p < 0.001, ™ =p < 0.01, *=p < 0.05.

Post hoc counterbalancing
Empirical results

In order to decorrelate brain size and gender (i.e., r¢, > 0.1), our
subsampling algorithm selected 117 samples in the VBM data
(i.e., a sample size reduction of 46.1%) and 131 samples in the
TBSS data (i.e., a reduction of 39.6%). The model performance
for different values of (number of voxels) are shown in Figure
3.6. Contrary to our expectations, the predictive accuracy of our
decoding pipeline after counterbalancing was similar to baseline
performance. This is particularly surprising in light of the large
reductions in sample size, which results in a substantial loss in
power, which in turn is expected to lead to lower model perfor-
mance.

One could argue that the lack of expected decrease in model
performance after counterbalancing can be explained by the
possibility that the subsampling and counterbalancing proce-
dure just leads to the selection of different features during uni-
variate feature selection compared to the baseline model. In
other words, the increase in model performance may be caused
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O L e e e
FIGURE 3.6 Model performance after counterbalancing (green) versus the
baseline performance (blue) for both the VBM (left) and TBSS (right) data
(upper row) and the difference in performance between the methods (lower
row). Performance reflects the average (difference) F; score across 10
folds; error bars reflect 95% confidence intervals. The dashed black line
reflect theoretical chance-level performance (0.5) and the dashed orange
line reflects the average model performance when only brain size is used
as a predictor. Asterisks indicates significant performance above chance:
**=p <0.001,=p < 0.0, *=p < 0.05.

by the feature selection function, which selects “better” vox-
els (i.e., containing more “robust” signal), resulting in similar
model performance in spite of the reduction in sample size.
However, this does not explain the similar scores for counter-
balancing and the baseline model when using all voxels (the data
points at ‘K voxels = ... (all)” in Figure 3.6). Another possibil-
ity for the relative increase in model performance based on the
counterbalanced data versus the baseline model is that counter-
balancing increased the amount of signal in the data. Indeed,
counterbalancing appeared to increase the (absolute) correla-
tions between the data and the target (r,x), which is visualized
in Figure 3.7, suggesting an increase in signal.

This apparent increase in the correlations between the target
and neuroimaging data goes against the intuition that remov-
ing the influence of a confound that is highly correlated with the
target will reduce decoding performance. To further investigate
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FIGURE 3.7 Density plots of the correlations between the target and voxels
across all voxels before (blue) and after (green) subsampling for both the
VBM and TBSS data. Density estimates are obtained by kernel density es-
timation with a Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth
selection.

this, we replicated this effect of post hoc counterbalancing on
simulated data, as described in the next section (Efficacy analy-
ses), and additionally investigated the cause of the negative bias
observed after WDCR using a separate set of simulations.

Efficacy analysis

To evaluate the efficacy of the three confound control meth-
ods, we simulated data in which we varied the strength of con-
found R* and signal R?, after which we applied the three con-
found control methods to the data. The results of this analysis
show that counterbalancing maintains chance-level model per-
formance when there is almost no signal in the data (i.e., signal
R* = 0.004; Figure 3.8, left graph, green line). However, when
there is some signal (i.e., signal R*> = 0.1; Fig. 8, right graph),
we observed that counterbalancing yields similar or even higher
scores than the baseline model, replicating the effects observed
in the empirical analyses.
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FIGURE 3.8 Results from the different confound control methods on simu-
lated data without any experimental effect (signal R? = 0.004; left graph)
and with some experimental effect (signal R> = 0.1; right graph) for dif-
ferent values of confound R?. The orange line represents the average per-
formance (x1 SD) when confound R? = 0, which serves as a “reference
performance” for when there is no confounded signal in the data. For both
graphs, the correlation between the target and the confound, 1yC, is fixed at
0.65. The results from the WDCR and CVCR methods are explained later.

As is apparent from Figure 3.8 (right panel), when there is
some signal, the counterbalanced data seem to yield better per-
formance than the baseline model only for relatively low con-
found R? values (confound R* < 0.15). As suggested by our find-
ings in the empirical data (see Figure 3.7), we hypothesized that
the observed improvement in model performance after coun-
terbalancing was caused by the increase in correlations between
the target and features in the neuroimaging data. In support of
this hypothesis, Figure 3.9 illustrates the relations between the
strength of the confound (confound R?, color coded), the in-
crease in correlations after post hoc counterbalancing (dr,x =
rjgger — r;§§ef; x-axis) for each confound R?, and the resulting dif-
ference in model performance (ACCcp — ACChyseline; Y-axis).
The figure shows that the increase or decrease in accuracy af-
ter counterbalancing (compared to baseline) depends on dryx
(r(79) = .922, p < 0.001), which in turn depends on confound
R* (r(79) = —0.987, p < 0.001). To reiterate, these differences
in model performance are only due to the post hoc counterbal-
ancing procedure and not due to varying signal in the simulated
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FIGURE 3.9 The relationship between the increase in correlations be-
tween target and data (ryX) after subsampling, confound R?, difference in
model performance (here: accuracy) between the counterbalance model
and baseline model (ACCcp — ACChaseline)-

data. The effect of post hoc counterbalancing on model perfor-
mance thus seems to depend on the strength of the confound.

While this relationship in Figure 3.9 might be statistically
interesting, it does not explain why post hoc counterbalancing
tends to increase the correlations between neuroimaging data
and target, and even outperforms the baseline model when con-
found R? is low and some signal is present. More importantly,
it does not tell us whether the post hoc counterbalancing pro-
cedure uncovers signal that is truly related to the target — in
which case the procedure suppresses noise — or inflates perfor-
mance estimates and thereby introduces positive bias. There-
fore, in the next section, we report and discuss results from a
follow-up simulation that intuitively shows why post hoc coun-
terbalancing leads to an increase in performance, and further-
more shows that this increase is in fact a positive bias.
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Analysis of positive bias after post hoc counterbalancing

With this follow-up analysis, we aimed to visualize the scenario
in which post hoc counterbalancing leads to a clearly better per-
formance than model performance without confound control.
As such, we generated 1000 data sets using a covariance matrix
that we knew leads to a large difference between the baseline
model and model performance after counterbalancing (i.e., data
with a low confound R?). From these 1000 datasets, we selected
the dataset that yielded the largest difference for our visualiza-
tion (see the Analysis of positive bias after post hoc counterbal-
ancing section in the Methods for details).

The data that yielded the largest difference (i.e., a perfor-
mance increase from 0.613 to 0.804, a 31% increase) are visu-
alized in Figure 3.10. Each sample’s confound value (C) is plot-
ted against its feature value (X), both before subsampling (upper
scatter plot) and after subsampling (lower scatter plot). From vi-
sual inspection, it appears that the samples rejected by the sub-
sampling procedure (i.e., the samples with the white border)
have relatively large absolute values of the confound variable,
which tend to lie close to or on the “wrong” side of the clas-
sification boundary (i.e., the dashed black line) in this specific
configuration of the data. In other words, subsampling seems to
reject samples that are harder to classify or would be incorrectly
classified based on the data (here, the single feature of X). The
density plots in Figure 3.10 show the same effect in a different
way: while the difference in the modes of the distributions of
the confound (C) between classes is reduced after subsampling
(i.e., the density plots parallel to the y-axis), the difference in the
modes of the distributions of the data (X) between classes is ac-
tually increased after subsampling (i.e., the density plots parallel
to the x-axis).
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