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Chapter 1

Introduction

“Science advances by playing twenty questions with
nature. The proper tactic is to frame a general ques-
tion, hopefully binary, that can be attacked exper-
imentally. Having settled that bits-worth, one can
proceed to the next. The policy appears optimal —
one never risks much, there is feedback from na-
ture at every step, and progress is inevitable. Un-
fortunately, the questions never seem to be really
answered, the strategy does not seem to work.”

— Allen Newell (1973)

Almost fifty years ago, the artificial intelligence pioneer and
cognitive psychologist Allen Newell summarized his discontent
with the field of psychology with the sentence “you cannot play
twenty questions with nature and win”. In a game of “twenty
questions”, one player thinks of a person or object and the other
player attempts to guess it by asking up to twenty questions,
such as “is it a person?”, “is he a man?”. Only questions that re-
quire a binary (yes/no) answer are allowed. Newell argued that
most (cognitive) psychology research attempts to understand
human behavior and cognition in a manner analogous to a game
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of twenty questions; that is, by repeatedly asking and trying to
answer “binary” research questions — such as “Does cognition
impact perception?” and “Are emotional facial expressions in-
nate?” — researchers attempt to gradually explore and reduce
the space of possible scientific explanations in the hope to, ulti-
mately, converge on the “the right answer”. Almost fifty years af-
ter Newell’s twenty questions article, most of the research in both
psychology and cognitive neuroscience still revolves around ask-
ing binary research questions about the mind and brain, framed
as hypotheses that are evaluated using an ever increasingly so-
phisticated toolbox of statistical significance tests. Newell, how-
ever, believed that in order to gain a fundamental understanding
of how the mind and brain work, we need to go beyond asking
binary questions and try to investigate human behavior and cog-
nition in all its complexity using quantitative, predictive models
that implement human cognitive capacities and behaviors. I be-
lieve that this argument is still as relevant today as it was almost
fifty years ago.

In this thesis, I explore a different, complementary approach
to the traditional methodology of hypothesis testing used in psy-
chology and cognitive neuroscience research. Although this al-
ternative approach has deep roots in psychology and is thus by
no means new, the version I advocate and have used in this the-
sis extends it with ideas and techniques from the rapidly growing
field of artificial intelligence and specifically machine learning.
As I will describe in more detail in the next section, the crucial
difference between the “hypothesis testing approach” and the
“predictive approach”, as advocated by Newell, is the way they
go about trying to explain and understand a particular cogni-
tive capacity or behavior (Breiman, 2001). Although I believe
that both approaches have their merits, I think that the predic-
tive approach may be particularly promising given the increas-
ing availability of large datasets and rapid advances in artificial
intelligence and machine learning (Halevy et al., 2009; Yarkoni
& Westfall, 2017).
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1.1. Inference done differently

This thesis features research that applies, adapts, and con-
tributes to machine learning techniques and methods in the con-
text of predictive models of behavior and neuroimaging data.
Specifically, chapters in this thesis describe both examples of
predictive models applied to neuroimaging data (chapter 2) and
behavior (chapter 6 and 7 as well as elements that facilitate and
enrich the predictive modelling framework, such as the value of
making datasets publicly accessible (chapter 4; Adjerid & Kelley,
2018; Poldrack & Gorgolewski, 2014), and a method to aid inter-
pretation of predictive models (chapter 3). Note that the studies
contained in this thesis do not all fall squarely in the predictive
approach. For example, chapter 5 features a study that revolved
around a confirmatory (and preregistered) hypothesis and chap-
ter 2 describes a study that in fact tests a very specific hypoth-
esis using a predictive model. In what follows, I will argue that
the predictive approach represents a useful and promising way
of doing research that complements the traditional hypothesis
testing approach with respect to their common goal of explana-
tion and gaining understanding of the brain and mind. But first,
I will illustrate that these two approaches can be thought of as
different inferences from the same model which helps to iden-
tify their relative (dis)advantages later.

1.1 Inference done differently
Both hypothesis testing and predictive modelling are scientific
methods used in psychology and neuroscience to gain under-
standing of human cognition and behavior. Both approaches
share an important common component: a statistical model
(Breiman, 2001). Although there are many different definitions
and interpretations of the term “model” (Kellen, 2019), in this
chapter, I define a statistical model as a quantitative representa-
tion of (a part of) a target system (Frigg & Hartmann, 2020). In
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1.1. Inference done differently

psychology and cognitive neuroscience, a target system may re-
fer to a specific cognitive capacity (e.g., emotion recognition) or
behavior (e.g., instrumental learning; Cummins, 2000; Rooij &
Baggio, 2021). Models are used to create a quantitative descrip-
tion, or hypothesis, of how data within a target system may have
been generated. Specifically, statistical models describe how one
quantity of interest within the target system, y (the “target vari-
able”), may arise as a function (f) of one or more other quantities
in the target system, X (the predictor variables or features), often
in the presence of noise (ε):

y = f(X) + ε (1.1)

Put differently, models represent explanations of how vari-
ability in a particular aspect of the target system (y) arises as
the result of a set of (causally related) features (Cummins, 2000;
Kay, 2017). For example, chapter 6 and 7 describe models that
attempt to explain the emotion people see in others’ facial ex-
pressions (y) as a function of a combination of facial movements
(Xmov):

emotion = f(Xmov) + ε (1.2)

In principle, the function linking the predictors to the tar-
get can be any function that maps a vector of numbers (the pre-
dictors, Xi) to a single number (the target value, yi), but almost
all statistical tests as well as most predictive models in psychol-
ogy and cognitive neuroscience use a variant of the general(ized)
linear model (GLM; Ivanova et al., 2021; Lindeløv, 2019). A lin-
ear model assumes that the target variable (which we assume to
be continuous for now) can be expressed as the sum of a set of
features (X1, X2, . . . , XP) weighted by a corresponding set of pa-
rameters (β1, β2, . . . , βP). When the target variable is continu-
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1.1. Inference done differently

ous, the corresponding linear model is more commonly known
as a linear regression model1:

f(Xi) =
P∑

j=1
Xijβij (1.3)

In linear models, like the linear regression model above,
the parameters quantify the strength of the association between
each predictor and the target variable. Model parameters are
considered unknown and need to be estimated from data. Here,
“data” refers to a specific number of observations of the target
variable (y) and the predictor variables (X). There are various
mathematical techniques to estimate the model parameters, in-
cluding the well-known (ordinary) least squares analytical solu-
tion, iterative gradient-based methods, regularized least squares,
and Bayesian parameter inference. These methods differ in how
they estimate the parameters (or, in more technical terms, which
particular function they optimize or minimize during estima-
tion), but they all return an estimate of the parameters of the
model. These estimated parameters are often denoted with a
“hat” (�; i.e., β̂) to distinguish them from the true, but unknown,
parameters (i.e., β).

After obtaining estimates of the model parameters, the
model can be used to make predictions about the value of the
target variable (y) given observations of the predictor variables
(X):

ŷi =
P∑

j=1
Xij β̂ij (1.4)

1In this chapter, we assume for simplicity that the target variable, y, is
continuous. The target variable, however, does not need to be continuous;
in that case, linear models from the GLM additionally include an “inverse
link function”, g−1, that maps the linear combination of features to the right
domain: y = g−1(Xβ).
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1.1. Inference done differently

Like the “hat” is used to distinguish estimated from true pa-
rameters, the “hat” used in the equation above is used to distin-
guish a prediction (i.e., an estimate of the target variable, ŷ) from
the true target value (y). The model predictions can be compared
to the actual target values to evaluate the model’s predictive ac-
curacy (which is alternatively called “model fit” or simply “ac-
curacy”), which is usually summarized in a single number using
metrics such as R2 (also more colloquially known as “explained
variance”).

Thus far, the specification of a (linear) model and the es-
timation of its parameters is common to both the traditional
and the predictive approach. The crucial difference between the
two approaches, at this point, is what element they treat as un-
known and perform inference on. In the hypothesis testing ap-
proach, inference is performed on the estimated model parame-
ters while in the predictive approach, inference is performed on
the model’s predictive accuracy (Bzdok, 2017).

This difference in their focus of inference is associated with
different cultures of research which use statistical models to
explain a target system in different ways (Breiman, 2001). In
the traditional hypothesis testing approach, the inferences about
model parameters are not meant to directly explain (parts of) a
target system. Instead, the target system is verbally described
and explained by a theory (Kellen, 2019). Explanation of the sys-
tem occurs via testing hypotheses about very specific aspects of
the system that are implied by a theory, often in strictly confir-
matory experiments (Wagenmakers et al., 2012). Because such
hypothesis-driven studies often use strictly controlled experi-
ments in which the factor(s) of interest are explicitly manipu-
lated, these studies afford causal interpretation of the observed
statistical effects (Groot, 1961). For example, if a particular
theory about emotion (e.g., basic emotion theory) implies that
certain categorical emotions should be universally recognized
(Keltner et al., 2019), then statistical tests that show that peo-
ple across the globe are able to distinguish these emotions above
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1.1. Inference done differently

chance level (e.g., Ekman et al., 1969) corroborate this theory.
The logic behind this approach is that we get an increasingly
better understanding of the target system if we keep testing hy-
potheses implied by the corresponding theory. Or in Newell’s
terminology, if we just keep asking nature questions, we will at
some point understand it.

Theories play a less significant role in the predictive mod-
elling culture. Although theories may inspire particular classes
of models and constrain the space of possible models (Rooij &
Baggio, 2021), they do not necessarily represent (a description
of) the target system itself. Instead of theories, the predictive
approach uses models themselves to both describe and explain
a target system (Guest & Martin, 2021). These models can be
thought of as algorithmic or mechanistic hypotheses of how a
particular cognitive capacity or behavior may emerge (Schyns et
al., 2009). For example, the categorical emotion model in chap-
ter 7 represents the mechanistic hypothesis that the capacity of
people to infer and recognize emotions from others’ faces occurs
through an integration of weighted linear combinations of both
facial movements and facial morphological features. Another
example is illustrated in Chapter 2, which describes a study in
which we hypothesized that the same brain networks associated
with emotion experience underlie the capacity for emotion un-
derstanding (Oosterwijk et al., 2017). Using a predictive model
trained on neural patterns associated with components of emo-
tion experience, we could accurately predict emotion compo-
nents associated with emotion understanding in others, which
suggests that these two processes share a common neural imple-
mentation (Peelen & Downing, 2007). Importantly, in the pre-
dictive approach, progress in terms of explanation and under-
standing is not achieved by binary tests of these theory-driven
hypotheses, but by the exploration and development of increas-
ingly accurate models of the target system itself (Naselaris et al.,
2011).
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1.1. Inference done differently

To be clear, although the research in this thesis often uses
techniques and models from machine learning, the predictive
approach should not be equated with machine learning. The ori-
gins of this approach, at least in the domain of psychology, can
be traced back to the psychophysics studies in the late nineteenth
century. Psychophysics studies aim to develop lawlike mod-
els of how stimulus attributes give rise to sensory experiences
and rarely feature explicit hypothesis tests of model parameters
(Gescheider, 2013). Predictive, computational models also play
a central role in the field of cognitive science, in which they are
used as formal representations and implementations of cogni-
tive processes (Núñez et al., 2019). While hypothesis testing
has dominated much of psychology and cognitive neuroscience
apart from psychophysics and cognitive science, the predic-
tive approach has become more prominent in both psychology
(Yarkoni & Westfall, 2017) and cognitive neuroscience (Varo-
quaux & Thirion, 2014) in recent years. Machine learning has
been particularly influential in cognitive neuroscience, where it
was introduced as “pattern analysis” (Norman et al., 2006), but
there are many other examples of predictive approaches in psy-
chology and cognitive neuroscience. These approaches include
network analysis (Borsboom & Cramer, 2013) and structural
equation modelling (Streiner, 2006) in psychology and system
identification (Wu et al., 2006), model-based cognitive neuro-
science (Forstmann & Wagenmakers, 2015; Turner et al., 2017),
and encoding models in cognitive neuroscience (Holdgraf et al.,
2017; Naselaris et al., 2011). Although these approaches differ
in the way they construct and apply models, they all emphasize
predictive accuracy rather than hypothesis testing.

In sum, although the traditional and predictive approach
share a core component — a quantitative model — they differ
in what aspect of the model they use for inference. The asso-
ciated research cultures implement different approaches to ex-
plain and gain understanding of a target system. As I will dis-
cuss in the next section, the predictive and hypothesis testing
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1.2. Towards prediction

approach each have specific advantages and, when used in com-
bination, can compensate for the weaknesses of the other.

1.2 Towards prediction
Scientific models come in many forms and can have many dif-
ferent purposes. In psychology and cognitive neuroscience, re-
searchers use scientific models primarily to explain cognitive ca-
pacities and behaviors (Yarkoni & Westfall, 2017). Here I use the
term “explanation” to be the identification of the causal compo-
nents of a particular target system (ibid.). Specifically, scientific
models used for hypothesis tests serve as tests of the existence
of causal components implied by a particular theory. Explana-
tion is, arguably, not the only function of scientific models. Two
other functions often attributed to scientific models are predic-
tion and exploration (Cichy & Kaiser, 2019; Gelfert, 2016). In
what follows, I will evaluate the models from the hypothesis test-
ing and the predictive approach on these criteria and argue that
they emphasize these criteria differently.

In terms of their ability to explain, models from the hypoth-
esis testing approach are hard to beat. By employing carefully
controlled experiments in which usually only a single factor is
manipulated, hypothesis tests of models are able to clearly es-
tablish the presence of specific causal components of the target
system. Moreover, these models usually contain few variables
and parameters and are almost always linear, which makes for
easy interpretation of the estimated causal effects. The strict ex-
perimental setup and simplicity of the models, however, leave
little room for exploration of alternative, possibly better mod-
els of the target system of phenomenon. In fact, exploration is
often explicitly discouraged in the context of hypothesis testing
(Wagenmakers et al., 2012), which forces researchers to set up
a completely new study in order to test an alternative model.
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1.2. Towards prediction

Not only exploration suffers from the emphasis on explanation,
but prediction as well. The very fact that most models for hy-
pothesis testing only intend to investigate and test a very specific
part of the target system results in very simple models that, ar-
guably, cannot capture the complexity of the cognitive capacities
and behaviors studied by psychologists and cognitive neurosci-
entists (Jolly & Chang, 2019; Tosh et al., 2020). The result is that
each individual model is usually only able to correctly predict a
fraction of the variance of the target variable. In a large sample
of psychology studies, Schäfer & Schwarz (2019) found that the
median model performance, expressed as the proportion of ex-
plained variance of the target variable, was only 12.6% and was
found to be as low as 2.5% for purely confirmatory and prereg-
istered studies.2

A prerequisite for comparing different predictive models is
that, ideally, they use the same dataset. Using the same dataset
to evaluate different models not only facilitates model compar-
ison but also facilitates incremental progress over time. The
famous ImageNet dataset used in computer vision provides a
striking example of the impact common datasets can have on the
field (Deng et al., 2009). Since 2011, the ImageNet dataset has
been used in the yearly ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015), a competition in which
researchers can submit object recognition models trained and
evaluated on the ImageNet dataset. In 2011, the best perform-
ing model achieved 51% accuracy, which has improved yearly,
with the best performing model in the 2021 edition achieving
91%.6.3 In the past decade, public datasets have emerged in psy-
chology and cognitive neuroscience as well, often motivated by

2Note that the original article by Schäfer & Schwarz (2019) reported ef-
fect size, r, instead of “variance explained”, R2. In analyses that are not cross-
validated, the latter can be obtained by squaring the former (but see Funder
& Ozer, 2019).

3Retrieved from https://paperswithcode.com/sota/
image-classification-on-imagenet.
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1.2. Towards prediction

the desire to improve research transparency and reproducibility
(Gewin, 2016). However, few have emerged as de facto bench-
marks for a given subdomain like ImageNet is for object recog-
nition, which may be due to the fact that most of these datasets
are acquired in strictly controlled experiments that strongly limit
the variety of models that can be explored and thus limit their
reuse (Naselaris et al., 2021). In cognitive neuroscience, there
have been some notable exceptions, which include the Natural
Scenes Database (Allen et al., 2021) and the Naturalistic Neu-
roimaging Database (Aliko et al., 2020), both with the goal to
facilitate the development of models for real-world vision. In
Chapter 4, I describe our effort to release a large, richly anno-
tated dataset to the public domain (Snoek et al., 2021). This
dataset, the Amsterdam Open MRI Collection, contains a set
of multimodal MRI datasets for individual difference analyses,
which colleagues and I made publicly available. Not only does
the variety in data sources (MRI, physiological, demographic,
and psychometric data) allow for the development of a wide va-
riety of novel models, it can also be used to evaluate the gener-
alizability of existing models (see e.g. Ngo et al., 2021).

The predictive accuracy of predictive models trained on
large, observational datasets, however, does not come for free.
One major disadvantage of the predictive approach is that the
mechanisms their models represent may not represent the ac-
tual mechanisms underlying human cognition and behavior. In
other words, complex models may represent what the philoso-
pher Daniel Dennett called “cognitive wheels”: useful inven-
tions that may solve practical problems, but just like wheels do
not occur in nature, do not reflect the true mechanisms under-
lying human cognitive capacities and behaviors (Dennett, 2006;
see also Maas et al., 2021). A famous example of a cognitive
wheel is the finding that state-of-the-art object recognition mod-
els seem to rely more on the texture than the shape of the ob-
ject (Geirhos et al., 2020; Xu et al., 2018), which seems to be
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1.2. Towards prediction

the other way around in humans (Baker et al., 2018). Relat-
edly, models used in artificial intelligence seem to be extremely
sensitive to spurious, non-causal relationships (Geirhos et al.,
2020). A famous example of this issue is the observation that
a model trained on X-ray data to predict pneumonia diagnosis
in fact used text annotations included in the X-ray images rather
than the images themselves (Zech et al., 2018). These limitations
have led to the critique that using complex predictive models to
explain and understand a target system, especially when using
highly non-linear models as is common in many artificial intel-
ligence applications, is like trading in one black box for another
(Kay, 2017). Indeed, given the definition of “explanation” as
identification of causal components of a target system, it is hard
to argue that predictive models by themselves explain anything.

It is fair to say predictive models, by themselves, are not suf-
ficient as a satisfactory explanation of a target system, but this is
not an insurmountable issue. I would argue that the construc-
tion and evaluation of a predictive model is only the first step;
the second step would be to gain insight into the mechanism that
is learned by the model (Cichy & Kaiser, 2019). In this second
step, the models are treated as concrete representations of the
target system that can be manipulated, experimented with, and
picked apart in order to gain insights into its mechanism — not
unlike model organisms in animal research (Scholte, 2018). In
both the machine learning community and the psychology and
cognitive neuroscience community, techniques have been de-
veloped to gain insight into the mechanisms of predictive mod-
els. One common technique is to selectively manipulate specific
model components, such as parameters or intermediate stim-
ulus representations, to test whether these manipulations lead
to similar changes in behavior in models and humans (e.g., Sei-
jdel et al., 2020). A related technique is to selectively manipulate
the input to the model instead of manipulating the model itself.
Chapter 3 outlines such a method that can be used to control
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1.2. Towards prediction

for specific stimulus features (“confounds”) in predictive mod-
els applied to neuroimaging data (see also Dinga et al., 2020),
which can prevent models from learning spurious relationships.
Another technique to increase the evidence for a “valid” model
(rather than a cognitive wheel) is to show that key components
of the model have plausible neural correlates (Güçlü & Gerven,
2015; Kriegeskorte et al., 2008; Yamins et al., 2014) or to directly
constrain models with neural data (Turner et al., 2017). The un-
derlying idea of applying these different techniques is that ex-
planation and understanding of a target system is not something
that is achieved by experiments on the target system directly, but
with experiments on the models that represent them (Cichy &
Kaiser, 2019).

Even though some of the weaknesses of the predictive ap-
proach can be mitigated, this does not mean that hypothesis
testing should be abandoned. I believe that hypothesis testing
remains and will remain an important tool in psychology and
cognitive neuroscience and that there are plenty of scenarios in
which hypothesis testing should in fact be preferred. First, if the
goal is not to provide explanations and gain understanding of
some target system, but to test an intervention, then hypothesis
testing is an appropriate method. For example, if one wants to
know whether some educational intervention improves reading
skills in children, then running a randomized controlled experi-
ment and associated hypothesis test is an excellent way to answer
this question. Second, hypothesis tests may be useful in provid-
ing answers to important (binary) questions that may challenge
important assumptions in a particular research domain or the-
ory. For example, Chapter 5 describes a neuroimaging study
that investigated the neural correlates of curiosity for negative
information (“morbid curiosity”; Oosterwijk et al., 2020), with
the preregistered hypothesis that choosing negative content ac-
tivates reward-related brain regions. The confirmation of this
hypothesis challenges current theories of curiosity, because the
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1.3. Outline of this thesis

most obvious indicator of reward — a pleasurable experience —
is missing in curiosity for negative content. Therefore, this find-
ing may indicate that information is rewarding “in and of itself ”.
Finally, phenomena established by the hypothesis testing ap-
proach may inform and constrain the development of predictive
models (Borsboom et al., 2020; Kellen, 2019). An example of
this feature is illustrated in Chapter 7, which describes a model
that uses variance in facial morphology to predict the emotions
people see in “neutral” faces. The development of this model was
inspired by the extensive literature on the associations between
factors related to variance in facial morphology (e.g., age, gen-
der, and ethnicity) and the emotional interpretations of static,
“neutral” faces (Hess, Adams, & Kleck, 2009). Although the pre-
dictive models were not developed to test specific effects, we ac-
tually observed (or “replicated” if you will) several well-known
effects from the emotional expression literature, such as the vi-
sual similarity and conceptual confusion between anger and dis-
gust expressions (Jack et al., 2014).

To summarize, I believe that the predictive approach repre-
sents a useful addition to the methodological toolbelt of psychol-
ogists and cognitive neuroscientists. Given the striking progress
in machine learning and artificial intelligence, I think that shift-
ing the focus from explanation to prediction may be a promis-
ing avenue for psychology and cognitive neuroscience, but the-
ory and hypothesis testing will remain important to constrain,
inform, and test models — an idea that will be revisited in the
general discussion.

1.3 Outline of this thesis
Although the chapters of this thesis have been shortly intro-
duced in the previous sections, I will shortly summarize them
here for convenience.
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1.3. Outline of this thesis

In chapter 2, I describe a study in which we used predic-
tive models applied to functional MRI data, known as “decod-
ing models” in the neuroimaging literature, to test a hypothesis
about the shared neural basis of emotion experience and emo-
tion understanding. To remedy the interpretational difficulties
inherent to decoding analyses (and predictive models in gen-
eral), chapter 3 outlines a method we developed to adjust for
confounds in decoding analyses which helps to rule out alter-
native explanations of the results. Moving away from the fo-
cus on predictive models, chapter 4 is the result from our effort
to publish the “Amsterdam Open MRI Collection” (AOMIC), a
set of three large, multimodal, MRI datasets, and chapter 5 de-
scribes a confirmatory, fully pre-registered neuroimaging study
on a psychological phenomenon called “morbid curiosity”. Fi-
nally, the last two chapters return to the use of predictive models,
this time in the context of facial expression perception. Chapter
6 outlines a method we developed (“hypothesis kernel analysis”)
to formalize verbal hypotheses as quantitative predictive mod-
els, which we apply to a specific set of hypotheses about how fa-
cial movements relate to categorical emotions. At last, chapter 7
concludes this thesis with a study that compares predictive mod-
els of affective face perception based on static features (i.e., fa-
cial morphology) and dynamic features (i.e., facial movements),
which shows that people integrate both sources of information
in their affective inferences and experiences.
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Chapter 2

Shared states: using MVPA to test
neural overlap between

self-focused emotion imagery and
other-focused emotion

understanding

This chapter has been published as: Oosterwijk, S.*, Snoek, L.*, Rot-
teveel, M., Barrett, L. F., & Scholte, H. S. (2017). Shared states: using
MVPA to test neural overlap between self-focused emotion imagery
and other-focused emotion understanding. Social cognitive and affec-
tive neuroscience, 12(7), 1025-1035.

* Shared first authorship
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Abstract The present study tested whether the neural pat-
terns that support imagining “performing an action”, “feeling a
bodily sensation” or “being in a situation” are directly involved
in understanding other people’s actions, bodily sensations and
situations. Subjects imagined the content of short sentences de-
scribing emotional actions, interoceptive sensations and situa-
tions (self-focused task), and processed scenes and focused on
how the target person was expressing an emotion, what this per-
son was feeling, and why this person was feeling an emotion
(other-focused task). Using a linear support vector machine
classifier on brain-wide multi-voxel patterns, we accurately de-
coded each individual class in the self-focused task. When gen-
eralizing the classifier from the self-focused task to the other-
focused task, we also accurately decoded whether subjects fo-
cused on the emotional actions, interoceptive sensations and sit-
uations of others. These results show that the neural patterns that
underlie self-imagined experience are involved in understand-
ing the experience of other people. This supports the theoretical
assumption that the basic components of emotion experience
and understanding share resources in the brain.
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2.1. Introduction

2.1 Introduction
To navigate the social world successfully it is crucial to under-
stand other people. But how do people generate meaningful rep-
resentations of other people’s actions, sensations, thoughts and
emotions? The dominant view assumes that representations of
other people’s experiences are supported by the same neural sys-
tems as those that are involved in generating experience in the
self (e.g., Gallese et al., 2004; see for an overview Singer, 2012).
We tested this principle of self-other neural overlap directly, us-
ing multi-voxel pattern analysis (MVPA), across three different
aspects of experience that are central to emotions: actions, sen-
sations from the body and situational knowledge.

In recent years, evidence has accumulated that suggests a
similarity between the neural patterns representing the self and
others. For example, a great variety of studies have shown that
observing actions and sensations in other people engages sim-
ilar neural circuits as acting and feeling in the self (see for an
overview Bastiaansen et al., 2009). Moreover, an extensive re-
search program on pain has demonstrated an overlap between
the experience of physical pain and the observation of pain
in other people, utilizing both neuroimaging techniques (e.g.,
Lamm et al., 2011) and analgesic interventions (e.g., Rütgen et
al., 2015; Mischkowski et al., 2016). This process of “vicari-
ous experience” or “simulation” is viewed as an important com-
ponent of empathy (Carr et al., 2003; Decety, 2011; Keysers
& Gazzola, 2014). In addition, it is argued that mentalizing
(e.g. understanding the mental states of other people) involves
the same brain networks as those involved in self-generated
thoughts (Uddin et al., 2007; Waytz & Mitchell, 2011). Specify-
ing this idea further, a constructionist view on emotion proposes
that both emotion experience and interpersonal emotion under-
standing are produced by the same large-scale distributed brain
networks that support the processing of sensorimotor, intero-
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2.1. Introduction

ceptive and situationally relevant information (Barrett & Sat-
pute, 2013; Oosterwijk & Barrett, 2014). An implication of these
views is that the representation of self- and other-focused emo-
tional actions, interoceptive sensations and situations overlap in
the brain.

Although there is experimental and theoretical support for
the idea of self-other neural overlap, the present study is the first
to directly test this process using MVPA across three different
aspects of experience (i.e. actions, interoceptive sensations and
situational knowledge). Our experimental design consisted of
two different tasks aimed at generating self- and other-focused
representations with a relatively large weight given to either ac-
tion information, interoceptive information or situational infor-
mation.

In the self-focused emotion imagery task (SF-task) subjects
imagined performing or experiencing actions (e.g., pushing
someone away), interoceptive sensations (e.g., increased heart
rate) and situations (e.g., alone in a park at night) associated
with emotion. Previous research has demonstrated that pro-
cessing linguistic descriptions of (emotional) actions and feeling
states can result in neural patterns of activation associated with,
respectively, the representation and generation of actions and
internal states (Oosterwijk et al., 2015; Pulvermüller & Fadiga,
2010). Furthermore, imagery-based inductions of emotion have
been successfully used in the MRI scanner before (Oosterwijk et
al., 2012; Wilson-Mendenhall et al., 2011), and are seen as ro-
bust inducers of emotional experience (Lench et al., 2011). In
the other-focused emotion understanding task (OF-task), sub-
jects viewed images of people in emotional situations and fo-
cused on actions (i.e., How does this person express his/her emo-
tions?), interoceptive sensations (i.e., What does this person feel
in his/her body) or the situation (i.e., Why does this person feel
an emotion?). This task is based on previous research study-
ing the neural basis of emotion oriented mentalizing (Spunt &
Lieberman, 2012).
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2.1. Introduction

With MVPA, we examined to what extent the SF- and OF-
task evoked similar neural patterns. MVPA allows researchers
to assess whether the neural pattern associated with one set of
experimental conditions can be used to distinguish between an-
other set of experimental conditions. This relatively novel tech-
nique has been successfully applied to the field of social neu-
roscience in general (e.g., Gilbert et al., 2012; Brosch et al.,
2013; Parkinson et al., 2014), and the field of self-other neural
overlap in particular. For example, several MVPA studies re-
cently assessed whether experiencing pain and observing pain
in others involved similar neural patterns (Corradi-Dell’Acqua
et al., 2016; Krishnan et al., 2016). Although there is an on-
going discussion about the specifics of shared representation in
pain based on these MVPA results (see for an overview Zaki et
al., 2016), many authors emphasize the importance of this tech-
nique in the scientific study of self-other neural overlap (e.g.,
Corradi-Dell’Acqua et al., 2016; Krishnan et al., 2016).

MVPA is an analysis technique that decodes latent cate-
gories from fMRI data in terms of multi-voxel patterns of activ-
ity (Norman et al., 2006). This technique is particularly suited
for our research question for several reasons. First of all, al-
though univariate techniques can demonstrate that tasks acti-
vate the same brain regions, only MVPA can statistically test
for shared representation (Lamm & Majdandžić, 2015). We will
evaluate whether multivariate brain patterns that distinguish be-
tween mental events in the SF-task can be used to distinguish,
above chance level, between mental events in the OF-task. Sec-
ond, MVPA analyses are particularly useful in research that is
aimed at examining distributed representations (Singer, 2012).
Based on our constructionist framework, we indeed hypothe-
size that the neural patterns that will represent self- and other
focused mental events are distributed across large-scale brain
networks. To capture these distributed patterns, we used MVPA
in combination with data-driven univariate feature selection on
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2.2. Methods

whole-brain voxel patterns, instead of limiting our analysis to
specific regions-of-interest (Haynes, 2015). And third, in con-
trast to univariate analyses that aggregate data across subjects,
MVPA can be performed within-subjects and is thus able to in-
corporate individual variation in the representational content of
multivariate brain patterns. In that aspect within-subject MVPA
is sensitive to individual differences in how people imagine ac-
tions, sensations and situations, and how they understand oth-
ers. In short, for our purpose to explicitly test the assumption
that self and other focused processes share neural resources,
MVPA is the designated method.

We tested the following two hypotheses. First, we tested
whether we could classify self-imagined actions, interoceptive
sensations and situations above chance level. Second, we tested
whether the multivariate pattern underlying this classification
could also be used to classify the how, what and why condition
in the other-focused task.

2.2 Methods

Subjects
In total, we tested 22 Dutch undergraduate students from the
University of Amsterdam (14 females; Mage = 21.48, s.d.age =
1.75). Of those 22 subjects, 13 subjects were tested twice in 2 ses-
sions about 1 week apart. Half of those sessions were used for the
model optimization procedure. The other half of the sessions,
combined with an additional nine subjects (who were tested
only once), constituted the model validation set (see Model op-
timization procedure section). In total, two subjects were ex-
cluded from the model validation dataset: one subject was ex-
cluded because there was not enough time to complete the ex-
perimental protocol and another subject was excluded due to
excessive movement (>3 mm within data acquisition runs).
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2.2. Methods

All subjects signed informed consent prior to the experi-
ment. The experiment was approved by the University of Ams-
terdam’s ethical review board. Subjects received 22.50 euro per
session. Standard exclusion criteria regarding MRI safety were
applied and people who were on psychopharmacological medi-
cation were excluded a priori.

Experimental design
Self-focused emotion imagery task

The self-focused emotion imagery task (SF-task) was created to
preferentially elicit self-focused processing of action, interocep-
tive or situational information associated with emotion. Sub-
jects processed short linguistic cues that described actions (e.g.,
pushing someone away; making a fist), interoceptive sensations
(e.g., being out of breath; an increased heart rate), or situations
(e.g., alone in a park at night; being falsely accused) and were
instructed to imagine performing or experiencing the content.
The complete instruction is presented in the Supplementary Ma-
terials; all stimuli used in the SF-task are presented in Supple-
mentary Table A.1. Linguistic cues were selected from a pilot
study performed on an independent sample of subjects (n = 24).
Details about this pilot study are available on request. The de-
scriptions generated in this pilot study were used as qualitative
input to create short sentences that described actions, sensations
or situations that were associated with negative emotions, with-
out including discrete emotion terms. The cues did not differ in
number of words, nor in number of characters (F < 1).

The SF-task was performed in two runs subsequent to the
other-focused task using the software package Presentation
(Version 16.4, www.neurobs.com). Each run presented 60 sen-
tences on a black background (20 per condition) in a fully ran-
domized event-related fashion, with a different randomization
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Figure 2.1 Overview of the self-focused and other-focused task.

for each subject. Note that implementing a separate randomiza-
tion for each subject prevents inflated false positive pattern cor-
relations between trials of the same condition, which may occur
in single-trial designs with short inter-stimulus intervals (Mum-
ford et al., 2014). A fixed inter-trial–interval of 2 seconds sepa-
rating trials; 12 null-trials (i.e. a black screen for 8 seconds) were
mixed with the experimental trials at random positions during
each run (see Figure 2.1).

Other-focused emotion understanding task

The other-focused emotion understanding task (OF-task) was
created to preferentially elicit other-focused processing of action,
interoceptive or situational information associated with emo-
tion. Subjects viewed images of people in negative situations
(e.g. a woman screaming at a man, a man held at gunpoint). A
red rectangle highlighted the face of the person that the subjects
should focus on to avoid ambiguity in images depicting more
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than one person. Image blocks were preceded by a cue indi-
cating the strategy subjects should use in perceiving the emo-
tional state of the people in the images (Spunt & Lieberman,
2012). The cue How instructed the subjects to identify actions
that were informative about the person’s emotional state (i.e.,
How does this person express his/her emotions?). The cue What
instructed subjects to identify interoceptive sensations that the
person could experience (i.e., What does this person feel in
his/her body). The cue Why instructed subjects to identify rea-
sons or explanations for the person’s emotional state (i.e., Why
does this person feel an emotion?). The complete instruction is
presented in the Supplementary Materials.

Stimuli for the OF-task were selected from the International
Affective Picture System database (IAPS; Lang, 2005; Lang et
al., 1997), the image set developed by the Kveraga lab (http:
//www.kveragalab.org/stimuli.html; Kveraga et al., 2015) and
the internet (Google images). We selected images based on a
pilot study, performed on an independent sample of subjects (n
= 22). Details about this pilot study are available on request.

The OF-task was presented using the software package Pre-
sentation. The task presented thirty images on a black back-
ground in blocked fashion, with each block starting with a what,
why or how cue (see Figure 2.1). Each image was shown three
times, once for each cue type. Images were presented in blocks
of six, each lasting 6 seconds, followed by a fixed inter trial inter-
val of 2 seconds. Null-trials were inserted at random positions
within the blocks. Both the order of the blocks and the specific
stimuli within and across blocks were fully randomized, with a
different randomization for each subject.

Procedure
Each experimental session lasted about 2 hours. Subjects who
underwent two sessions had them on different days within a
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2.2. Methods

time span of 1 week. On arrival, subjects gave informed con-
sent and received thorough task instructions, including practice
trials (see the Supplementary Materials for a translation of the
task instructions). The actual time in the scanner was 55 min-
utes, and included a rough 3D scout image, shimming sequence,
3-min structural T1-weighted scan, one functional run for the
OF-task and two functional runs for the SF-task. We deliber-
ately chose to present the SF-task after the OF-task to exclude
the possibility that the SF-task affected the OF-task, thereby in-
fluencing the success of the decoding procedure.

After each scanning session, subjects rated their success rate
for the SF-task and OF-task (see Supplementary Figure A.1). In
the second session, subjects filled out three personality question-
naires that will not be further discussed in this paper and were
debriefed about the purpose of the study.

Image acquisition
Subjects were tested using a Philips Achieva 3T MRI scanner
and a 32-channel SENSE headcoil. A survey scan was made for
spatial planning of the subsequent scans. Following the survey
scan, a 3-min structural T1-weighted scan was acquired using
3D fast field echo (TR: 82 ms, TE: 38 ms, flip angle: 8°, FOV:
240 × 188 mm, 220 slices acquired using single-shot ascending
slice order and a voxel size of 1.0 × 1.0 × 1.0 mm). After the
T1-weighted scan, functional T2*-weighted sequences were ac-
quired using single shot gradient echo, echo planar imaging (TR
= 2000 ms, TE = 27.63 ms, flip angle: 76.1°, FOV: 240 × 240 mm,
in-plane resolution 64 × 64, 37 slices (with ascending acquisi-
tion), slice thickness 3 mm, slice gap 0.3 mm, voxel size 3 × 3 ×
3 mm), covering the entire brain. For the SF-task, 301 volumes
were acquired; for the OF-task 523 volumes were acquired.
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Model optimization procedure
As MVPA is a fairly novel technique, no consistent, optimal
MVPA pipeline has been established (Etzel et al., 2011). There-
fore, we adopted a validation strategy in the present study that
is advised in the pattern classification field (Kay et al., 2008;
Kriegeskorte et al., 2009). This strategy entailed that we sepa-
rated our data into an optimization dataset to find the most op-
timal parameters for preprocessing and analysis, and a valida-
tion dataset to independently verify classification success with
those optimal parameters. We generated an optimization and
validation dataset by running the SF-task and OF-task twice, in
two identical experimental sessions for a set of thirteen subjects.
The sessions were equally split between the optimization and
validation set (see Figure 2.2A); first and second sessions were
counterbalanced between the two sets. Based on a request re-
ceived during the review process, we added nine new subjects to
the validation dataset. Ultimately, the optimization-set held 13
sessions and the validation-set, after exclusion of 2 subjects (see
Subjects section), held 20 sessions.

In the optimization-set, we explored how different pre-
processing options and the so-called ‘hyperparameters’ in the
MVPA pipeline affected the performance of the (multivariate)
analyses (visualized in Figure 2.2B; see MVPA pipeline subsec-
tion for more details). Thus, we performed the self- and cross-
analyses on the data of the optimization set multiple times with
different preprocessing options (i.e., smoothing kernel, low-pass
filter and ICA-based denoising strategies) and MVPA hyperpa-
rameter values (i.e., univariate feature selection threshold and
train/test size ratio during cross-validation). We determined
the optimal parameters on the basis of classification perfor-
mance, which was operationalized as the mean precision value
after a repeated random subsampling procedure with 1000 iter-
ations. A list with the results from the optimization procedure
can be found in Supplementary Table A.2 and Supplementary
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Figure 2.2 Schematic overview of the cross-validation procedures. A)
The partitioning of the dataset into an optimization-set (used for tuning of
preprocessing and MVPA hyperparameters) and a validation-set (used to
get a fully cross-validated, unbiased estimate of classification performance).
The preprocessing and MVPA hyperparameters yielded from the optimiza-
tion procedure were subsequently applied to the preprocessing and MVPA
pipeline of the validation-set. B) The within-subject MVPA pipeline of the
self- and cross-analysis implemented in a repeated random subsampling
scheme with 100,000 iterations. In each iteration, 90% of the self-data trials
(i.e. train-set) were used for estimating the scaling parameters, performing
feature selection and fitting the SVM. These steps of the pipeline (i.e. scal-
ing, feature selection, SVM fitting) were subsequently applied to the inde-
pendent test-set of both the self-data trials and the other-data trials.
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Figure A.2. The optimal parameters were then used for prepro-
cessing and the self- and cross-analysis within the validation-
set, in which the findings from the optimization-set were repli-
cated. All findings discussed in the 2.3 section follow from the
validation-set (see Supplementary Figure A.3 for an overview of
the findings from the optimization-set).

Preprocessing and single-trial modeling
Functional and structural data were preprocessed and analyzed
using FSL 5.0 (Jenkinson et al., 2012) and MATLAB (2012b;
www.mathworks.com/products/matlab), using an in-house de-
veloped preprocessing pipeline and the parameters established
in the optimization procedure. Functional data were corrected
for motion (using FSL MCFLIRT) and slice timing and was
spatially smoothed (5 mm isotropic kernel). After preprocess-
ing, individual time series were modeled using a double-gamma
hemodynamic response function in a single-trial GLM design
using FSL’s FEAT. Resulting beta values were converted to t-
values (Misaki et al., 2010), constituting a whole-brain pattern
of t-values per trial. Subsequently, the data were indexed by a
gray-matter mask (excluding most white-matter, CSF and brain-
stem voxels). Thus, the data points for the MVPA consist of
whole-brain (gray matter) t-value patterns per trial. For the op-
timization analyses, the data were transformed to standard space
(MNI152, 2 mm) using FSL’s FNIRT. To reduce computation
time for the validation data, and in particular its correspond-
ing permutation analysis, analyses on the validation dataset were
performed on data in native (functional) space.
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Multi-voxel pattern analysis
MVPA pipeline

Within the optimization and validation dataset, we imple-
mented an iterated cross-validation scheme that separated the
data into a train-set and a test-set (this procedure is described
in more detail in the next section). Before fitting the classifier
on the train-set in each iteration of the cross-validation scheme,
standardization and voxel selection were estimated and applied
to the train-set. Standardization ensured that each feature (i.e.,
voxel) had zero mean and unit variance across trials. After
standardization, voxel selection was performed in each itera-
tion on the train-set by extracting the voxels with the highest
average pairwise Euclidian distance across classes, which will
be subsequently referred to as a voxel’s differentiation score.
More specifically, differentiation scores were calculated by sub-
tracting the mean value across trials per class from each other
(i.e., action—interoception, action—situation, interoception—
situation), normalizing these values across voxels (yielding “z-
scores”), and taking their absolute value. The three resulting val-
ues per voxel were averaged and the most differentiating vox-
els (z-score threshold: 2.3, as determined by the optimization
procedure; see Model optimization procedure section) were ex-
tracted and used as features when fitting the classifier. Impor-
tantly, the standardization parameters (voxel mean and vari-
ance) and voxel indices (i.e. which voxels had differentiation
scores above threshold) were estimated from the train-set only
and subsequently applied to the test-set to ensure independence
between the train- and test-set (see Figure 2B). After standard-
ization and voxel selection in each iteration, a support vector
classifier (SVC) was fit on the train-set and cross-validated on
the test-set, generating a class probability for each trial in the
test-set. Our classifier of choice was the SVC implementation
from the scikit-learn svm module (Pedregosa et al., 2011) with
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a linear kernel, fixed regularization parameter (C) of 1.0, one-
vs-one multiclass strategy, estimation of class probability out-
put (instead of discrete class prediction) and otherwise default
parameters.

Cross-validation scheme and bagging procedure

Cross-validation of the classification analysis was implemented
using a repeated random subsampling cross-validation scheme
(also known as Monte Carlo cross-validation), meaning that,
for each iteration of the analysis, the classification pipeline (i.e.,
standardization, voxel selection and SVM fitting) was applied
on a random subset of data points (i.e., the train-set) and cross-
validated on the remaining data (i.e., the test-set). Each trial be-
longed to one out of three classes: action, interoception or sit-
uation. Following the results from the parameter optimization
process, we selected four trials per class for testing, amounting
to 12 test-trials per iteration.

Per iteration, the classifier was fit on the train-set from the
SF-data. Subsequently, this classifier was cross-validated on
12 test SF-trials (test-set “self-analysis”) and 12 test OF-trials
(test-set “cross-analysis”; see Figure 2B). This process was subse-
quently iterated 100 000 times to generate a set of class distribu-
tions for each trial. After all iterations, the final predicted class of
each trial was determined by its highest summed class probabil-
ity across iterations (also known as “soft voting”; see Supplemen-
tary Figure A.4). This strategy of a random sub-sampling cross-
validation scheme in combination with majority (soft) voting is
more commonly known as “bagging” (Breiman, 1996). An im-
portant advantage of bagging is that it reduces model overfit-
ting by averaging over an ensemble of models, which is espe-
cially useful for multi-voxel pattern analyses because fMRI data
is known to display high variance (Varoquaux, 2018).

After generating a final prediction for all trials using the soft
voting method, we constructed confusion matrices for both the
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self- and cross-analysis. In each raw confusion matrix with pre-
diction counts per class, cells were normalized by dividing pre-
diction counts by the sum over rows (i.e., the total amount of
predictions per class), yielding precision-scores (also known as
positive predictive value). In other words, this metric represents
the ratio of true positives to the sum of true positives and false
positives (see Supplementary Figure A.5 for a description of the
results expressed as recall estimates, or the ratio of true positives
to the total number of samples in that class). This classification
pipeline generated subject-specific confusion matrices that were
subsequently averaged to generate the final classification scores.

Statistical evaluation

To evaluate the statistical significance of the observed average
precision-scores in the confusion matrices, we permuted the
original self- and cross-analysis 1300 times per subject with ran-
domly shuffled class labels, yielding 1300 confusion matrices
(with precision-scores). We then averaged the confusion ma-
trices across subjects, yielding 1300 permuted confusion ma-
trices reflecting the null-distribution of each cell of the matrix
(which is centered around chance level classification, i.e., 33%).
For each cell in the diagonal of the observed confusion matrix,
p-values were calculated as the proportion of instances of values
in the permuted matrix which were higher than the values in the
observed matrix (Nichols & Holmes, 2002). To correct for mul-
tiple comparisons, p-values were tested against a Bonferroni-
corrected threshold. The distribution of precision-scores and
the relationship between precision-scores in the self- and cross-
analysis is reported in Supplementary Figure A.6.

Spatial representation

To visualize the classifier feature weights, we plotted the abso-
lute feature weights averaged over iterations, subjects and pair-
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wise classifiers (action vs interoception, action vs situation, in-
teroception vs situation) that underlie our multiclass classifica-
tion analysis. We chose to visualize the spatial representation
of our model by plotting the average absolute feature weights,
because the absolute value of feature weights in linear SVMs
can be interpreted as how important the weights are in con-
structing the model’s decision hyperplane (Ethofer et al., 2009;
Guyon et al., 2002; Stelzer et al., 2014). To correct for a posi-
tive bias in plotting absolute weights, we ran the main classifica-
tion analysis again with permuted labels to extract the average
absolute feature weights that one would expect by chance. Sub-
sequently, a voxel-wise independent t-test was performed for all
feature weights across subjects, using the average permuted fea-
ture weights as the null-hypothesis, yielding an interpretable t-
value map (see the supplementary code notebook on our Github
repository for computational details).

Additional analyses
In addition to the self-analysis and the self-to-other cross-
analysis presented in the main text, we also performed a within-
subjects other-to-self cross-analysis (see for a similar approach
Corradi-Dell’Acqua et al., 2016) and a between-subjects self-
analysis and self-to-other cross-analysis. These analyses for-
ward largely similar results as the analyses presented in the main
text. Due to space constraints, we present these additional anal-
yses in the Supplementary Materials. Supplementary Figure
A.7 represents confusion matrices with precision and recall es-
timates for the other-to-self cross-analysis. Supplementary Fig-
ure A.8 presents the results of MVPA analyses using condition-
average voxel patterns across subjects instead of single-trial pat-
terns within subjects.
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Univariate analysis
To be complete, we also report a set of univariate analyses per-
formed on the SF-task and the OF-task data. The univariate
analyses were performed on the validation dataset, and were
subject to the same preprocessing steps as the MVPA analy-
sis, except that we did not model each trial, but each condi-
tion as a separate regressor. The group-level analysis was per-
formed with FSL’s FLAME1 option. To examine differences
in neural activity between conditions, we calculated contrasts
between the three classes in the SF-task (self-action vs self-
interoception; self-action vs self-situation and self-interoception
vs self-situation) and the three classes in the OF-task (other-
action vs other-interoception; other-action vs other-situation
and other-interoception vs other-situation). We report clusters
that were corrected using cluster-correction with a voxel-wise
threshold of 0.005 (z = 2.7) and a cluster-wise p-value threshold
of 0.05.

Code availability
The MVPA-analysis and subsequent (statistical) analyses were
implemented using custom Python scripts, which depend heav-
ily on the skbold package, a set of tools for machine learning
analyses of fMRI data developed in-house (see https://github.
com/lukassnoek/skbold). The original scripts were documented
and are hosted at the following Github repository: https://
github.com/lukassnoek/SharedStates.

2.3 Results

Multi-voxel pattern analysis
The analyses of the SF-task demonstrated that voxel patterns re-
flecting imagined self-focused actions, interoceptive sensations
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and situations associated with emotion could be decoded accu-
rately for each individual class (all p < 0.001, see Figure 2.3).
Furthermore, when we generalized the classifier based on the
SF-task to the data from the OF-task (i.e. cross-analysis), we
found that neural representations of emotional actions, intero-
ceptive sensations and situations of others could also be reliably
decoded above chance (all p < 0.001; see Figure 2.3). Supple-
mentary Table A.3 presents mean precision-scores across classes
for each subject separately. As predicted, our findings demon-
strate that self-imagined actions, interoceptive sensations and
situations are associated with distinct neural patterns. Further-
more, and as predicted, our findings demonstrate that the pat-
terns associated with self-imagined actions, sensations and situ-
ations can be used to decode other-focused actions, interoceptive
sensations and situations (see Supplementary Figure A.7 for the
complementary other-to-self cross-analysis).

To visualize which neural regions were involved in the suc-
cessful decoding of the three classes in the OF-task and SF-
task, we display in Figure 2.4 the averaged absolute values of
the SVM feature weights. Note that Figure 2.4 only displays
one feature map, as both the self and cross-analysis depend on
the same model. Regions displaying high and consistent feature
weights across subjects were frontal pole (including parts of the
dorsomedial prefrontal cortex and ventromedial prefrontal cor-
tex), orbitofrontal cortex (OFC), inferior frontal gyrus (IFG),
superior frontal gyrus (SFG), middle frontal gyrus (MFG), in-
sular cortex, precentral gyrus, postcentral gyrus, posterior cin-
gulate cortex/precuneus, superior parietal lobule (SPL), supra-
marginal gyrus (SMG), angular gyrus (AG), middle temporal
gyrus (MTG), temporal pole (TP), lateral occipital cortex (lOC)
and occipital pole (see Supplementary Table A.4 for an overview
of all involved regions).
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Self-analysis Cross-analysis

Figure 2.3 Confusion matrices for the self- (left diagram) and cross-
analysis (right diagram). Values indicate precision-scores, representing the
proportion of true positives given all predictions for a certain class. Note
that action and interoception columns in the cross-analysis confusion ma-
trix do not add up to 1, which is caused by the fact that, for some subjects,
no trials were predicted as action or interoception, rendering the calculation
of precision ill-defined (i.e., division by zero). In this case, precision scores
were set to zero.

t-value

X = -30X = -50X = -57 X = 0 X = 30 X = 50 X = 58

Figure 2.4 Uncorrected t-value map of average feature weights across
subjects; t-values were calculated by dividing the average absolute fea-
ture weights, which was corrected for positive bias by subtracting the mean
permuted absolute weight across all iterations, by the standard error across
subjects. Only voxels belonging to clusters of 20 or more voxels are shown.
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Self-focused task Other-focused task

z = 45 y = 65 x = 71

z = 55 y = 59 x = 27

z = 52 x = 46 x = 68

z = 45 y = 65 x = 71

z = 55 y = 59 x = 27

z = 52 x = 46 x = 68

Contrast

2.6        z-value        5

Figure 2.5 Univariate contrasts for the self-focused and other-focused
task.

Univariate analyses
Figure 2.5 displays the pattern of neural activity revealed by uni-
variate contrasts between the three different classes in the SF-
task and the OF-task. For the sake of brevity, we summarize the
most relevant univariate results here. Please see the Supplemen-
tary Materials and the study’s Github repository for an overview
of all clusters.

In the SF-task, action was associated with increased involve-
ment of the MFG, SFG, AG, SMG, lOC and middle temporal
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gyrus (temporo-occipital) when compared with interoception,
and increased involvement of the IFG, MFG, SFG, anterior cin-
gulate cortex (ACC), supplementary motor area (SMA), pre-
central gyrus, postcentral gyrus, insular cortex, SMG, SPL, lOC
and middle temporal gyrus (temporo-occipital) when compared
with situation. Interoception was associated with increased in-
volvement of the insular cortex, precentral gyrus, postcentral
gyrus and central operculum when compared with action, and
increased involvement of the insular cortex, central operculum,
parietal operculum, IFG, frontal pole, ACC, SMA, precentral
gyrus, postcentral gyrus, SMG, SPL and putamen when com-
pared with situation. The situation vs action contrast and the
situation vs interoception contrast forwarded clusters in simi-
lar regions, including the temporal pole, superior/middle tem-
poral gyrus, IFG, SFG, frontal pole, medial prefrontal cortex
(mPFC), OFC, precuneus, posterior cingulate cortex (PCC),
lOC, fusiform gyrus, hippocampus and lingual gyrus.

In the OF-task, action was associated with increased involve-
ment of the IFG, MFG, SFG, precentral gyrus, postcentral gyrus,
SMG, SPL, middle/inferior temporal gyrus (temporo-occipital),
lOC and fusiform gyrus, when compared with interoception,
and increased involvement of the IFG, MFG, SFG, frontal pole,
precentral gyrus, postcentral gyrus, SMG, SPL, middle/inferior
temporal gyrus (temporo-occipital) and lOC, when compared
with situation. Interoception was associated with increased in-
volvement of the left frontal pole when compared with action,
and increased involvement of the SMG, SPL, precentral gyrus,
postcentral gyrus, PCC, IFG and frontal pole, when compared
with situation. The situation vs action contrast and the situation
vs interoception contrast forwarded clusters in similar regions,
including the temporal pole, superior/middle temporal gyrus,
frontal pole, mPFC, PCC, precuneus, AG, lOC, occipital pole,
fusiform gyrus and lingual gyrus.
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2.4 Discussion
In this study, we investigated the neural overlap between self-
focused emotion imagery and other-focused emotion under-
standing using a decoding approach. The results confirmed
our hypothesis that other-focused representations of emotion-
related actions, bodily sensations and situations can be decoded
from neural patterns associated with accessing similar sources
of information in a self-focused task. This cross-classification
was successful even though the tasks employed different stimu-
lus materials and instructions. Thus, the observed neural over-
lap between the underlying processes in the SF-task and OF-task
cannot be attributed to similarities in stimulus dimensions or
task instructions. Rather, we conclude from our findings that
emotion experience and emotion understanding have basic psy-
chological processes in common.

Although we could successfully classify the interoception
class in the SF-task (across both datasets), and in the OF-task
in the validation dataset, we were not able to successfully clas-
sify the interoception class in the OF-task in the optimization
dataset. Furthermore, although precision and recall metrics
demonstrated similar results for the action and situation cross-
classification in the validation dataset, these metrics demon-
strated different results for the classification of the interoception
class (see Supplementary Figure A.5). This difference was partly
driven by the fact that trials were very infrequently classified
as interoception in the cross-classification analysis. The find-
ing that subjects reported lower success rates for the what trials
in which they were asked to identify interoceptive sensations in
other people than for the how (action) and why (situation) trials
may point to a possible explanation for the inconsistent findings
regarding interoception. Although speculative, it may be rela-
tively easy to recognize (and represent) interoceptive sensations
when they are described in words (as in the SF-task), but rel-
atively hard to deduce these sensations when only diffuse cues
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about someone’s internal state are available (e.g. posture, frown-
ing facial expression, as in the OF-task).

An exploration of the spatial characteristics of the dis-
tributed neural pattern associated with successful decoding of
the SF-task and OF-task revealed regions that are commonly ac-
tive during self- and other-focused processing. First, we found
that successful classification was associated with voxels in the
precentral gyrus, IFG, SMA and SPL. These same regions were
also revealed by the univariate analyses, in particular for the ac-
tion and interoception classes. These regions are part of the
so-called “mirror” network, which is argued to support both
action planning and action understanding (Bastiaansen et al.,
2009; Gallese et al., 2004; Spunt & Lieberman, 2012; Van Over-
walle & Baetens, 2009). Furthermore, we found that successful
classification was associated with voxels in the lateral occipital
cortex and fusiform gyrus, which have been linked in the lit-
erature to the processing of both concrete and abstract action
(Wurm & Lingnau, 2015) and the (visual) processing of emo-
tional scenes, faces and bodies (Gelder et al., 2010; Sabatinelli et
al., 2011). The univariate analyses demonstrated activity in the
lOC and the fusiform gyrus in particular for the situation class,
both when subjects viewed images of other people in emotional
situations, and when subjects imagined being in an emotional
situation themselves.

Second, we found that successful classification was associ-
ated with voxels in regions associated with somatosensory pro-
cessing (postcentral gyrus) and the representation of interocep-
tive sensations (insular cortex, see Craig & Craig, 2009; Med-
ford & Critchley, 2010). Univariate analyses of the SF-task also
demonstrated involvement of these regions for both the action
and interoception classes. This pattern of activation is consis-
tent with embodied cognition views that propose that thinking
about or imagining bodily states is grounded in simulations of
somatosensory and interoceptive sensations (Barsalou, 2009).
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In contrast to previous work on interoceptive simulation when
observing pain or disgust in other people (cf. Bastiaansen et al.,
2009; Lamm et al., 2011), the univariate analyses of the OF-task
did not demonstrate insular cortex activation for the interocep-
tion class.

And third, we found that successful classification was asso-
ciated with voxels in the middle temporal gyrus (including the
temporal pole), PCC/precuneus, dmPFC and vmPFC. These re-
gions are part of the so-called “mentalizing” network (or “de-
fault” network). This same network was also revealed by the
univariate analyses, in particular for the situation class. Meta-
analyses have demonstrated that the mentalizing network is
commonly active during tasks involving emotion experience
and perception (Lindquist et al., 2012), mentalizing/theory of
mind (Spreng et al., 2009; Van Overwalle & Baetens, 2009), judg-
ments about the self and others (Denny et al., 2012) and seman-
tic/conceptual processing in general (Binder et al., 2009). More-
over, this network contributes to the representation of emotion
knowledge (Peelen et al., 2010) and is involved in both em-
pathy (Keysers & Gazzola, 2014; Zaki & Ochsner, 2012) and
self-generated thought (Andrews-Hanna et al., 2014). We pro-
pose that this network supports the implementation of situated
knowledge and personal experience that is necessary to gener-
ate rich mental models of emotional situations, both when ex-
perienced individually, and when understood in someone else
(cf. Barrett & Satpute, 2013; Oosterwijk & Barrett, 2014).

The most important contribution of our study is that it pro-
vides direct evidence for the idea of shared neural resources be-
tween self-and other focused processes. It is important, how-
ever, to specify what we think this “sharedness” entails. In re-
search on pain, there is an ongoing discussion about whether
experiencing pain and observing pain in others are distinct pro-
cesses (Krishnan et al., 2016), or whether experiencing and ob-
serving pain involve a shared domain-specific representation
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(e.g., a discrete pain-specific brain state; Corradi-Dell’Acqua
et al., 2016) and/or the sharing of domain-general processes
(e.g. general negative affect; Zaki et al., 2016). Connecting to
this discussion, we think that it is unlikely that our decoding suc-
cess reflects the sharing of discrete experiential states between
the SF-task and OF-task. After all, unlike in studies on pain, the
stimuli in our tasks referred to a large variety of different actions,
sensations and situations. Instead, decoding success in our study
is most likely due to shared brain state configurations, reflecting
the similar engagement of domain-general processes evoked by
self- and other-focused instances of action (or interoceptive sen-
sation or situation). This interpretation is consistent with views
that suggests that global processes are shared between pain ex-
perience and pain observation (Lamm et al., 2011; Zaki et al.,
2016) or between self- and other-focused tasks in general (e.g.,
Legrand & Ruby, 2009). Moreover, this interpretation is consis-
tent with the suggestion that neural re-use is a general principle
of brain functioning (e.g., Anderson, 2016).

In our constructionist view, we posit that emotion im-
agery and understanding share basic psychological processes
(cf. Oosterwijk & Barrett, 2014). More specifically, both emo-
tion imagery and understanding are “conceptual acts” in which
the brain generates predictions based on concept knowledge
(including sensorimotor and interoceptive predictions) that
are meaningful within a particular situational context (Bar-
rett, 2012; Barrett & Simmons, 2015). Based on accumulating
evidence, we propose that these predictions are implemented
in domain-general brain networks (cf. Oosterwijk et al., 2012;
Barrett & Satpute, 2013). The relative contribution of these
networks depends on the demands of the situational context.
Specifically, in contexts where people are focused on actions and
expressions (their own or someone else’s) a network that sup-
ports the representation of sensorimotor states (i.e., the mir-
ror system) may contribute relatively heavily; in contexts where
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people are focused on bodily states (their own or someone
else’s) a network that supports the representation of interocep-
tive states (i.e., the salience network) may contribute relatively
heavily; and in contexts where people are focused on interpret-
ing a situation (their own or someone else’s) a network that sup-
ports a general inferential meaning-making function (i.e., the
mentalizing network) may contribute relatively heavily (see also
Oosterwijk et al., 2015). We believe that it is likely that our ability
to successfully distinguish between classes in the self-task relies
on the relatively different patterns of activity across these net-
works for actions, interoceptive sensations and situations. Re-
garding our ability to successfully generalize from the self- to
the other-focused task, we believe that this relies on the rela-
tively similar pattern of activity across these networks when peo-
ple generate self-focused or other-focused instances of action (or
interoceptive sensation or situation).

Our explicit manipulation of the weight of action, interocep-
tive and situational information in the SF-task and the OF-task
tests the possibility of shared representation in a novel way. Al-
though this procedure may seem artificial, social neuroscience
studies support the notion that there is contextual variety in
the contribution of action, interoceptive, and situation informa-
tion when understanding other people (Oosterwijk et al., 2015;
Van Overwalle & Baetens, 2009). Moreover, this weighting may
mimic the variability with which these sources of information
contribute to different instances of subjective emotional expe-
rience in reality (Barrett, 2012). In future directions, it may be
relevant to apply the current paradigm to the study of individu-
als in which access to these sources of information is disturbed
(e.g., individuals with different types of psychopathology) or fa-
cilitated (e.g., individuals with high interoceptive sensitivity).

In short, the present study demonstrates that the neural pat-
terns that support imagining “performing an action”, “feeling a
bodily sensation” or “being in a situation” are directly involved
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in understanding other people’s actions, sensations and situa-
tions. This supports our prediction that self- and other-focused
emotion processes share resources in the brain.
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Chapter 3

How to control for confounds in
decoding analyses of
neuroimaging data

This chapter has been published as: Snoek, L.*, Miletić, S.*, & Scholte,
H.S. (2019). How to control for confounds in decoding analyses of
neuroimaging data. NeuroImage, 184, 741-760.

* Shared first authorship
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Abstract Over the past decade, multivariate “decoding
analyses” have become a popular alternative to traditional mass-
univariate analyses in neuroimaging research. However, a fun-
damental limitation of using decoding analyses is that it remains
ambiguous which source of information drives decoding per-
formance, which becomes problematic when the to-be-decoded
variable is confounded by variables that are not of primary inter-
est. In this study, we use a comprehensive set of simulations as
well as analyses of empirical data to evaluate two methods that
were previously proposed and used to control for confounding
variables in decoding analyses: post hoc counterbalancing and
confound regression. In our empirical analyses, we attempt to
decode gender from structural MRI data while controlling for
the confound “brain size”. We show that both methods intro-
duce strong biases in decoding performance: post hoc counter-
balancing leads to better performance than expected (i.e., posi-
tive bias), which we show in our simulations is due to the sub-
sampling process that tends to remove samples that are hard to
classify or would be wrongly classified; confound regression, on
the other hand, leads to worse performance than expected (i.e.,
negative bias), even resulting in significant below chance perfor-
mance in some realistic scenarios. In our simulations, we show
that below chance accuracy can be predicted by the variance of
the distribution of correlations between the features and the tar-
get. Importantly, we show that this negative bias disappears in
both the empirical analyses and simulations when the confound
regression procedure is performed in every fold of the cross-
validation routine, yielding plausible (above chance) model per-
formance. We conclude that, from the various methods tested,
cross-validated confound regression is the only method that ap-
pears to appropriately control for confounds which thus can be
used to gain more insight into the exact source(s) of information
driving one’s decoding analysis.
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3.1 Introduction
In the past decade, multivariate pattern analysis (MVPA) has
emerged as a popular alternative to traditional univariate analy-
ses of neuroimaging data (Haxby, 2012; Norman et al., 2006).
The defining feature of MVPA is that it considers patterns of
brain activation instead of single units of activation (i.e., vox-
els in MRI, sensors in MEG/EEG). One of the most-often used
type of MVPA is “decoding”, in which machine learning algo-
rithms are applied to neuroimaging data to predict a particu-
lar stimulus, task, or psychometric feature. For example, de-
coding analyses have been used to successfully predict various
experimental conditions within subjects, such as object cate-
gory from fMRI activity patterns (Haxby et al., 2001) and work-
ing memory representations from EEG data (LaRocque et al.,
2013), as well between-subject factors such as Alzheimer’s dis-
ease (vs. healthy controls) from structural MRI data (Cuingnet
et al., 2011) and major depressive disorder (vs. healthy con-
trols) from resting-state functional connectivity (Craddock et
al., 2009). One reason for the popularity of MVPA, and espe-
cially decoding, is that these methods appear to be more sen-
sitive than traditional mass-univariate methods in detecting ef-
fects of interest. This increased sensitivity is often attributed to
the ability to pick up multidimensional, spatially distributed rep-
resentations which univariate methods, by definition, cannot do
(Jimura & Poldrack, 2012). A second important reason to use
decoding analyses is that they allow researchers to make predic-
tions about samples beyond the original dataset, which is more
difficult using traditional univariate analyses (Hebart & Baker,
2017).

In the past years, however, the use of MVPA has been crit-
icized for a number of reasons, both statistical (Allefeld et al.,
2016; Davis et al., 2014; Gilron et al., 2017; Haufe et al., 2014)
and more conceptual (Naselaris & Kay, 2015; Weichwald et al.,
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2015) in nature. For the purposes of the current study, we focus
on the specific criticism put forward by Naselaris & Kay (2015)
, who argue that decoding analyses are inherently ambiguous in
terms of what information they use (see Popov et al., 2018 for a
similar argument in the context of encoding analyses). This type
of ambiguity arises when the classes of the to-be-decoded vari-
able systematically vary in more than one source of information
(see also Carlson & Wardle, 2015; Ritchie et al., 2017; Weichwald
et al., 2015). The current study aims to investigate how decoding
analyses can be made more interpretable by reducing this type
of “source ambiguity”.

To illustrate the problem of source ambiguity, consider, for
example, the scenario in which a researcher wants to decode
gender.1 (male/female) from structural MRI with the aim of
contributing to the understanding of gender differences — an
endeavor that generated considerable interest and controversy
(Chekroud et al., 2016; Del Giudice et al., 2016; Glezerman,
2016; Joel & Fausto-Sterling, 2016; Rosenblatt, 2016). By per-
forming a decoding analysis on the MRI data, the researcher
hopes to capture meaningful patterns of variation in the data of
male and female participants that are predictive of the partici-
pant’s gender. The literature suggests that gender dimorphism in
the brain is manifested in two major ways (Good, Johnsrude, et
al., 2001b; O’Brien et al., 2011). First, there is a global difference
between male and female brains: men have on average about
15% larger intracranial volume than women, which falls in the
range of mean gender differences in height (8.2%) and weight
(18.7%; Gur et al., 1999; Lüders et al., 2002).2 Second, brains

1The terms “gender” and “sex” are both used in the relevant research
literature. Here, we use the term gender because we refer to self-reported
identity in the data described below.

2Note that information related to global brain size persists when re-
searchers analyze the structural MRI data in a common, normalized brain
space, because spatial registration “squeezes” relatively large brains into a
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of men and women are known to differ locally: some specific
brain areas are on average larger in women than in men (e.g., in
superior and middle temporal cortex; Good, Johnsrude, et al.,
2001a) and vice versa (e.g., in frontomedial cortex; Goldstein et
al., 2001). One could argue that, given that one is interested in
explaining behavioral or mental gender differences, global dif-
ferences are relatively uninformative, as it reflects the fact than
male bodies are on average larger than female bodies (Gur et al.,
1999; Sepehrband et al., 2018). As such, our hypothetical re-
searcher is likely primarily interested in the local sources of vari-
ation in the neuroanatomy of male and female brains.

Now, supposing that the researcher is able to decode gender
from the MRI data significantly above chance, it remains unclear
on which source of information the decoder is capitalizing: the
(arguably meaningful) local difference in brain structure or the
(in the context of this question arguably uninteresting) global
difference in brain size? In other words, the data contain more
than one source of information that may be used to predict gen-
der. In the current study, we aim to evaluate methods that im-
prove the interpretability of decoding analyses by controlling for
“uninteresting” sources of information.

Partitioning effects into true signal and
confounded signal
Are multiple sources of information necessarily problematic?
And what makes a source of information interesting or unin-
teresting? The answers to these questions depend on the partic-
ular goal of the researcher using the decoding analysis (Hebart
& Baker, 2017). In principle, multiple sources of information in
the data do not pose a problem if a researcher is only interested
smaller template, increasing voxel statistics (e.g., gray matter density in VBM
analyses), and vice versa (Douaud et al., 2007). This effect of global brain size
similarly affects functional MRI analyses (Brodtmann et al., 2009).
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in accurate prediction, but not in interpretability of the model
(Bzdok, 2017; Haufe et al., 2014; Hebart & Baker, 2017). In
brain-computer interfaces (BCI), for example, accurate predic-
tion is arguably more important than interpretability, i.e., know-
ing which sources of information are driving the decoder. Simi-
larly, if the researcher from our gender decoding example is only
interested in accurately predicting gender regardless of model
interpretability, source ambiguity is not a problem.3 In most sci-
entific applications of decoding analyses, however, model inter-
pretability is important, because researchers are often interested
in the relative contributions of different sources of information
to decoding performance. Specifically, in most decoding anal-
yses, researchers often (implicitly) assume that the decoder is
only using information in the neuroimaging data that is related
to the variable that is being decoded (Ritchie et al., 2017). In this
scenario, source ambiguity (i.e., the presence of multiple sources
of information) is problematic as it violates this (implicit) as-
sumption. Another way to conceptualize the problem of source
ambiguity is that, using the aforementioned example, (global)
brain size is confounding the decoding analysis of gender. Here,
we define a confound as a variable that is not of primary inter-
est, correlates with the to-be-decoded variable (the target), and is
encoded in the neuroimaging data.

To illustrate the issue of confounding variables in the con-
text of decoding clinical disorders, suppose one is interested
in building a classifier that is able to predict whether subjects
are suffering from schizophrenia or not based on the subjects’
gray matter data. Here, the variable “schizophrenia-or-not” is
the variable of interest, which is assumed to be encoded in the
neuroimaging data (i.e., the gray matter) and can thus be de-
coded. However, there are multiple factors known to covary

3However, if accurate prediction is the only goal in this scenario, we
would argue that there are probably easier and less expensive methods than
neuroimaging to predict a participant’s gender.
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with schizophrenia, such as gender (i.e., men are more often di-
agnosed with schizophrenia than women; McGrath et al., 2008)
and substance abuse (Dixon, 1999), which are also known to af-
fect gray matter (Bangalore et al., 2008; Gur et al., 1999; Van
Haren et al., 2013). As such, the variables gender and substance
abuse can be considered confounds according to our definition,
because they are both correlated with the target (schizophrenia
or not) and are known to be encoded in the neuroimaging data
(i.e., the effect of these variables is present in the gray matter
data). Now, if one is able to classify schizophrenia with above-
chance accuracy from gray matter data, one cannot be sure
which source of information within the data is picked up by the
decoder: information (uniquely) associated with schizophre-
nia or (additionally) information associated with gender or sub-
stance abuse? If one is interested in more than mere accurate
prediction of schizophrenia, then this ambiguity due to con-
founding sources of information is problematic.

Importantly, as our definition suggests, what is or is not re-
garded as a confound is relative — it depends on whether the re-
searchers deems it of (primary) interest or not. In the aforemen-
tioned hypothetical schizophrenia decoding study, for example,
one may equally well define the severity of substance abuse as the
to-be-decoded variable, in which the variable “schizophrenia-
or-no”” becomes the confounding variable. In other words, one
researcher’s signal is another researcher’s confound. Regardless,
if decoding analyses of neuroimaging data are affected by con-
founds, the data thus contain two types of information: the “true
signal” (i.e., variance in the neuroimaging data related to the tar-
get, but unrelated to the confound) and the “confounded signal”
(i.e., variance in the neuroimaging data related to the target that
is also related to the confound; see Figure 3.1). In other words,
source ambiguity arises due to the presence of both true sig-
nal and confounded signal and, thus, controlling for confounds
(by removing the confounded signal) provides a crucial method-
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“Confounded signal”
“True signal”

brain

confound

target
r (      ,      ) 2 > 0

X y

c

Figure 3.1 Visualization of how variance in brain data (X) can partitioned
into “True signal” and “Confounded signal”, depending on the correlation
structure between the brain data (X), the confound (C), and the target (y).
Overlapping circles indicate a non-zero (squared) correlation between the
two variables.

ological step forward in improving the interpretability of decod-
ing analyses.

In the decoding literature, various methods have been ap-
plied to control for confounds. We next provide an overview
of these methods, highlight their advantages and disadvantages,
and discuss their rationale and the types of research settings they
can be applied in. Subsequently, we focus on two of these meth-
ods to test whether these methods succeed in controlling for the
influence of confounds.

Methods for confound control
In decoding analyses, one aims to predict a certain target vari-
able from patterns of neuroimaging data. Various methods dis-
cussed in this section are supplemented with a mathematical for-
malization; for consistency and readability, we define the nota-
tion we will use in Table 3.1.
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Table 3.1 Notation.

Symbol Dims. Description

N - Number of samples (usually subjects or trials)

K - Number of neuroimaging features (e.g., voxels or
sensors)

P - Number of confound variables (e.g., age, reaction
time, or brain size)

Xij N × K The neuroimaging patterns (often called the ”data”
in the current article), where the subescript
i ∈ 1 . . . N refers to the individual samples (rows),
and the subscript j ∈ 1 . . . K to individual features
(columns)

y N × 1 The target variable (i.e., what is to be decoded)

C N × P The confound variable(s)

β̂ K + 1 The parameters estimated in a general linear model
(GLM)

w K + 1 The parameters estimated in a decoding model

rCy - Sample Pearson correlation coefficient between C
and y

ry(X.C) - Sample semipartial Pearson correlation coefficient
between X and y, controlled for C

p(rCy) - p-value of sample Pearson correlation between C
and y

Note: Format based on Diedrichsen and Kriegeskorte (2017). For the
correlations (r), we assume that P = 1 and thus that the correlations in the
table reduce to a scalar.

A priori counterbalancing

Ideally, one would prevent confounding variables from influenc-
ing the results as much as possible before the acquisition of the
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neuroimaging data.4 One common way do this (in both tradi-
tional “activation-based” and decoding analyses) is to make sure
that potential confounding variables are counterbalanced in the
experimental design (Görgen et al., 2017). In experimental re-
search, this would entail randomly assigning subjects to design
cells (e.g., treatment groups) such that there is no structural cor-
relation between characteristics of the subjects and design cells.
In observational designs (e.g., in the gender/brain size example
described earlier), it means that the sample is chosen such that
there is no correlation between the confound (brain size) and
observed target variable (gender). That is, given that men on av-
erage have larger brains than women, this would entail including
only men with relatively small brains and women with relatively
large brains.5 The distinction between experimental and obser-
vational studies is important because the former allow the re-
searcher to randomly draw samples from the population, while
the latter require the researcher to choose a sample that is not
representative of the population, which limits the conclusions
that can be drawn about the population (we will revisit this is-
sue in the Discussion section).

Formally, in decoding analyses, a design is counterbalanced
when the confound C and the target y are statistically indepen-
dent. In practice, this often means that the sample is chosen
so that there is no significant correlation coefficient between C
and y (although this does not necessarily imply that C and y are

4In the context of behavioral data, a priori counterbalancing is often
called “matching” or a employing a “case-control design” (Cook, 2002)

5Note that the counterbalancing process is the same for both traditional
univariate (activation-based) studies and decoding studies, but the direction
of analysis is reversed in univariate (e.g., gender → brain) and decoding stud-
ies (e.g., brain → gender). As such, in univariate studies the confound (e.g.,
brain size) is counterbalanced with respect to the predictor(s) (e.g., gender)
while in decoding studies the confound (e.g., brain size) is counterbalanced
with respect to the target (e.g., gender).
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actually independent). To illustrate the process of counterbal-
ancing, let’s consider another hypothetical experiment: suppose
one wants to set up an fMRI experiment in which the goal is
to decode abstract object category (e.g., faces vs. houses) from
the corresponding fMRI patterns (cf. Haxby et al., 2001), while
controlling for the potential confounding influence of low-level
or mid-level stimulus features, such as luminance, spatial fre-
quency, or texture (Long et al., 2017). Proper counterbalanc-
ing would entail making sure that the images used for this par-
ticular experiments have similar values for these low-level and
mid-level features across object categories (see for details Gör-
gen et al., 2017). Thus, in this example, low-level and mid-level
stimulus features should be counterbalanced with respect to ob-
ject category, such that above chance decoding of object cate-
gory cannot be attributed to differences in low-level or mid-level
stimulus features (i.e., the confounds).

A priori counterbalancing of potential confounds is, how-
ever, not always feasible. For one, the exact measurement of a
potentially confounding variable may be impossible until data
acquisition. For example, the brain size of a participant is only
known after data collection. Similarly, Todd et al. (2013) found
that their decoding analysis of rule representations was con-
founded by response times of to the to-be-decoded trials. An-
other example of a “data-driven” confound is participant mo-
tion during data acquisition (important in, for example, decod-
ing analyses applied to data from clinical populations such as
ADHD; Yu-Feng et al., 2007). In addition, a priori counterbal-
ancing of confounds may be challenging because of the limited
size of populations of interest. Especially in clinical research set-
tings, researchers may not have the luxury of selecting a coun-
terbalanced sample due to the small number of patient subjects
available for testing. Lastly, researchers may simply discover
confounds after data acquisition.
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Given that a priori counterbalancing is not possible or un-
desirable in many situations, it is paramount to explore the pos-
sibilities of controlling for confounding variables after data ac-
quisition for the sake of model interpretability, which we discuss
next.

Include confounds in the data

One perhaps intuitive method to control for confounds in de-
coding analyses is to include the confound(s) in the data (i.e., the
neuroimaging data, X; see, e.g., Sepehrband et al., 2018) used by
decoding model. That is, when applying a decoding analysis to
neuroimaging data, the confound is added to the data as if it were
another voxel (or sensor, in electrophysiology). This intuition
may stem from the analogous situation in univariate (activation-
based) analyses of neuroimaging data, in which confounding
variables are controlled for by including them in the design ma-
trix together with the stimulus/task regressors. For example, in
univariate analyses of functional MRI, movement of the partic-
ipant is often controlled for by including motion estimates in
the design matrix of first-level analyses (Johnstone et al., 2006);
in EEG, some control for activity due to eye-movements by in-
cluding activity measured by concurrent electro-oculography as
covariates in the design-matrix (Parra et al., 2005). Usually, the
general linear model is then used to estimate each predictor’s
influence on the neuroimaging data. Importantly, the param-
eter estimates (β̂) are often interpreted as reflecting the unique
contribution6 of each predictor variable, independent from the
influence of the confound.

6However, parameter estimates only reflect unique variance when ordi-
nary, weighted, or generalized least squares is used to find the model param-
eters. Other (regularized) linear models, such as ridge regression or LASSO,
are not guaranteed to yield parameters that explain unique proportions of
variance.
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Contrary to general linear models as employed in univariate
(activation-based) analyses, including confound variables in the
data as predictors for decoding models is arguably problematic.
If a confound is included in the data in the context of decod-
ing models, the parameter estimates of the features (often called
“feature weights”, w, in decoding models) may be corrected for
the influence of the confound, but the model performance (usu-
ally measured as explained variance, R2, or classification accu-
racy; Hebart & Baker, 2017) is not. That is, rather than provid-
ing an estimate of decoding performance “controlled for” a con-
found, one obtains a measure of performance when explicitly in-
cluding the confound as an interesting source of variance that the
decoder is allowed to use. This is problematic because research
using decoding analyses generally does not focus on parameter
estimates but on statistics of model performance. Model per-
formance statistics (e.g., R2, classification accuracy) alone can-
not disentangle the contribution of different sources of informa-
tion as they only represent a single summary statistic of model
fit (Ritchie et al., 2017). One might, then, argue that addition-
ally inspecting feature weights of decoding models may help in
disambiguating different sources of information (Sepehrband et
al., 2018). However, it has been shown that feature weights can-
not be reliably mapped to specific sources of information, i.e., as
being task-related or confound-related (e.g., features with large
weights may be completely uncorrelated with the target variable;
Haufe et al., 2014; Hebart & Baker, 2017). As such, it does not
make sense to include confounds in the set of predictors when
the goal is to disambiguate the different sources of information
in decoding analyses.

Recently, another approach similar to including confounds
in the data has been proposed, which is based on the idea of
a dose-response curve (Alizadeh et al., 2017). In this method,
instead of adding the confound(s) to the model directly, the rel-
ative contribution of true and confounded signal is systemat-
ically controlled. The authors show that this approach is able
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to directly quantify the unique contribution of each source of
information, thus effectively controlling for confounded signal.
However, while sophisticated in its approach, this method only
seems to work for categorical confounds, as it is difficult (if not
impossible) to systematically vary the proportion of confound-
related information when dealing with continuous confounds or
when dealing with more than one confound.

Control for confounds during pattern estimation

Another method that was used in some decoding studies on
functional MRI data aims to control for confounds in the initial
procedure of estimating activity patterns of the to-be-decoded
events, by leveraging the ability of the GLM to yield parame-
ter estimates reflecting unique variance (Woolgar et al., 2014).
In this method, an initial “first-level” (univariate) analysis mod-
els the fMRI time series (s) as a function of both predictors-of-
interest (X) and the confounds (C), often using the GLM7:

s = Xβx + Cβc + ε (3.1)

Then, only the estimated parameters (β̂, or normalized pa-
rameters, such as t-values or z-values) corresponding to the
predictors-of-interest (β̂x) are used as activity estimates (i.e.,
the used for predicting the target y) in the subsequent decod-
ing analyses. This method thus takes advantage of the shared
variance partitioning in the pattern estimation step to control
for potential confounding variables. However, while elegant
in principle, this method is not applicable in between-subject
decoding studies (e.g., clinical decoding studies; Waarde et al.,
2014; Cuingnet et al., 2011), in which confounding variables

7Note that X and C, here, refer to (usually HRF-convolved) predictors of
the time series signal (s) for a single voxel. In the rest of the article, X and C
refer to features that are defined across samples (not time).
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are defined across subjects, or in electrophysiology studies, in
which activity patterns do not have to be8 estimated in a first-
level model, thus limiting the applicability of this method.

Post hoc counterbalancing of confounds

When a priori counterbalancing is not possible, some have ar-
gued that post hoc counterbalancing might control for the influ-
ence of confounds (Rao et al., 2017, pp. 24, 38). In this method,
given that there is some sample correlation between the target
and confound (rCy ̸= 0) in the entire dataset, one takes a subset
of samples in which there is no empirical relation between the
confound and the target (e.g., when rCy ≈ 0). In other words,
post hoc counterbalancing is a way to decorrelate the confound
and the target by subsampling the data. Then, subsequent de-
coding analysis on the subsampled data can only capitalize on
true signal, as there is no confounded signal anymore (see Figure
3.2). While intuitive in principle, we are not aware of whether
this method has been evaluated before and whether it yields un-
biased performance estimates.

Confound regression

The last and perhaps most common method to control for con-
founds is removing the variance that can be explained by the
confound (i.e., the confounded signal) from the neuroimaging
data directly (Abdulkadir et al., 2014; Dukart et al., 2011; Kostro
et al., 2014; Rao et al., 2017; Todd et al., 2013) — a process we re-
fer to as confound regression (also known as “image correction”;

8Note that, technically, one could use the “Control for confounds dur-
ing pattern estimation” method in electrophysiology as well, by first fitting a
univariate model explaining the neuroimaging data (Xj for j = 1 . . . K) as a
function of both the target (y) and the confound (C) and subsequently only
using the parameter estimates of the target-predictor (β̂x) as patterns in the
subsequent decoding analysis.
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Figure 3.2 A schematic visualization how the main two confound control
methods evaluated in this article deal with the “confounded signal”, making
sure decoding models only capitalize on the “true signal”.

Rao et al., 2017). In this method, a (usually linear) regression
model is fitted on each feature in the neuroimaging data (i.e.,
a single voxel or sensor) with the confound(s) as predictor(s).
Thus, each feature in the neuroimaging data X is modelled as a
linear function of the confounding variable(s), C:

Xj = Cβ + ε (3.2)

We can estimate the parameter(s) for feature using, for ex-
ample, ordinary least squares as follows (for an example using a
different model, see Abdulkadir et al., 2014):

β̂j = (CTC)−1CTXj (3.3)

Then, to remove the variance of (or “regress out”) the con-
found from the neuroimaging data, we can subtract the variance
in the data associated with confound (Cβ̂j) from the original
data:
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Xj,corr = Xj − Cβ̂j (3.4)
In which Xj,corr represents the neuroimaging feature Xj from

which all variance of the confound is removed (including the
variance shared with y, i.e., the confounded signal; see Figure
3.2). When subsequently applying a decoding analysis on this
corrected data, one can be sure that the decoder is not capital-
izing on signal that is correlated with the confound, which thus
improves interpretability of the decoding analysis.

Confound regression has been applied in several decoding
studies. Todd et al. (2013) were, as far as the current authors
are aware, the first to use this method to control for a confound
(in their case, reaction time) that was shown to correlate with
their target variable (rule A vs. rule B). Notably, they both re-
gressed out reaction time from the first-level time series data
(similar to the “Control for confounds during pattern estima-
tion” method) and regressed out reaction time from the trial-by-
trial activity estimates (i.e., confound regression as described in
this section). They showed that controlling for reaction time in
this way completely eliminated the above chance decoding per-
formance. Similarly, Kostro et al. (2014) observe a substantial
drop in classification accuracy when controlling for scanner site
in the decoding analysis of Huntington’s disease, but only when
scanner site and disease status were actually correlated. Lastly,
Rao et al. (2017) found that, in contrast to Kostro et al. and Todd
et al., confound regression yielded similar (or slightly lower, but
still significant) performance compared to the model without
confound control, but it should be noted that this study used
a regression model (instead of a classification model) and evalu-
ated confound control in the specific situation when the training
set is confounded, but the test set is not.9 In sum, while con-
found regression has been used before, it has yielded variable

9Note that we did not discuss studies that implement a different con-
found regression procedure (e.g., Abdulkadir et al., 2014; Dukart et al., 2011),
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results, possibly due to slightly different approaches and differ-
ences in the correlation between the confounding variable and
the target.

Current study
In summary, multiple methods have been proposed to deal with
confounds in decoding analyses. Often, these methods have spe-
cific assumptions about the nature or format of the data (such as
“A priori counterbalancing” and “Confound control during pat-
tern estimation”), differ in their objective (e.g., prediction vs. in-
terpretation, such as in “Include confounds in the data”), or have
yielded variable results (such as “Confound regression”). There-
fore, given that we are specifically interested in interpreting de-
coding analyses, the current study evaluates the two methods
that are applicable in most contexts: post hoc counterbalancing
and confound regression (but see Supplementary Materials for
a tentative evaluation of this method based on simulated func-
tional MRI data). In addition to these two methods, we propose
a third method — a modified version of confound regression —–
which we show yields plausible, seemingly unbiased, and inter-
pretable results.

To test whether these methods are able to effectively con-
trol for confounds and whether they yield plausible results, we
apply them to empirical data, as well as to simulated data in
which the ground truth with respect to the signal in the data (i.e.,
the proportion of true signal and confounded signal) is known.
For our empirical data, we enact the previously mentioned hy-
pothetical study in which participant gender is decoded from
in which confound regression is only estimated on the samples from a single
class of the target variable (e.g., in our gender decoding example, this would
mean that confound regression models are only estimated on the data from
male, or female, subjects). As this form of confound regression does not dis-
ambiguate the sources of information driving the decoder, it is not discussed
further in this article.
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structural MRI data. We use a large dataset (N = 217) of struc-
tural MRI data and try to predict subjects’ gender (male/female)
from gray and white matter patterns while controlling for the
confound of “brain size” using the aforementioned methods,
which we compare to a baseline model in which confounds are
not controlled for. Given the previously reported high correla-
tions between brain size and gender (Barnes et al., 2010; Smith &
Nichols, 2018), we expect that successfully controlling for brain
size yields lower decoding performance than using uncorrected
data, but not below chance level. Note that higher decoding per-
formance after controlling for confounds is theoretically possi-
ble when the correlation between the confound and variance in
the data unrelated to the target (e.g., noise) is sufficiently high
to cause suppressor effects (see Figure 1 in Haufe et al., 2014;
Hebart & Baker, 2017). However, because our confound, brain
size, is known to correlate strongly with our target gender (ap-
prox. r = 0.63; Smith & Nichols, 2018), it is improbable that
it also correlates highly with variance in brain data that is unre-
lated to gender. It follows then that classical suppression effects
are unlikely and we thus expect lower model performance after
controlling for brain size.

However, shown in detail below, both post hoc counterbal-
ancing and confound regression lead to unexpected results in
our empirical analyses: counterbalancing fails to reduce model
performance while confound regression consistently yields low
model performance up to the point of significant below chance
accuracy. In subsequent analyses of simulated data, we show
that both methods lead to biased results: post hoc counterbal-
ancing yields inflated model performance (i.e., positive bias)
because subsampling selectively selects a subset of samples in
which features correlate more strongly with the target variable,
suggesting (indirect) circularity in the analysis (Kriegeskorte et
al., 2009). Furthermore, our simulations show that negative
bias (including significant below chance classification) after con-
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found regression on the entire dataset is due to reducing the sig-
nal below what is expected by chance (Jamalabadi et al., 2016),
which we show is related to and can be predicted by the standard
deviation of the empirical distribution of correlations between
the features in the data and the target. We propose a minor but
crucial addition to the confound regression procedure, in which
we cross-validate the confound regression models (which we call
“cross-validated confound regression”, CVCR), which solves the
below chance accuracy issue and yields plausible model perfor-
mance in both our empirical and simulated data.

3.2 Methods

Data
For the empirical analyses, we used voxel-based morphome-
try (VBM) data based on T1-weighted scans and tract-based
spatial statistics (TBSS) data based on diffusion tensor images
from 217 participants (122 women, 95 men), acquired with a
Philips Achieva 3T MRI-scanner and a 32-channel head coil at
the Spinoza Centre for Neuroimaging (Amsterdam, The Nether-
lands).

VBM acquisition & analysis

The T1-weighted scans with a voxel size of 1.0 × 1.0 × 1.0 mm
were acquired using 3D fast field echo (TR: 8.1 ms, TE: 3.7
ms, flip angle: 8°, FOV: 240 × 188 mm, 220 slices). We used
“FSL-VBM” protocol (Douaud et al., 2007) from the FSL soft-
ware package (version 5.0.9; Smith et al., 2004); using default
and recommended parameters (including non-linear registra-
tion to standard space). The resulting VBM-maps were spa-
tially smoothed using a Gaussian kernel (3 mm FWHM). Subse-
quently, we organized the data in the standard pattern-analysis
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format of a 2D (N × K) array of shape 217 (subjects) × 412473
(non-zero voxels).

TBSS acquisition & analysis

Diffusion tensor images with a voxel size of 2.0 × 2.0 × 2.0 mm
were acquired using a spin-echo echo-planar imaging (SE-EPI)
protocol (TR: 7476 ms, TE: 86 ms, flip angle: 90°, FOV: 224 ×
224 mm, 60 slices), which acquired a single b = 0 (non-diffusion-
weighted) image and 32 (diffusion-weighted) b = 1000 images.
All volumes were corrected for eddy-currents and motion (us-
ing the FSL command “eddy_correct”) and the non-diffusion-
weighted image was skullstripped (using FSL-BET with the frac-
tional intensity threshold set to 0.3) to create a mask that was
subsequently used in the fractional anisotropy (FA) estimation.
The FA-images resulting from the diffusion tensor fitting pro-
cedure were subsequently processed by FSL’s tract-based spa-
tial statistics (TBSS) pipeline (Smith et al., 2006), using the rec-
ommended parameters (i.e., non-linear registration to FSL’s 1
mm FA image, construction of mean FA-image and skeletonized
mean FA-image based on the data from all subjects, and a thresh-
old of 0.2 for the skeletonized FA-mask). Subsequently, we or-
ganized the resulting skeletonized FA-maps into a 2D (N × K)
array of shape 217 (subjects) × 128340 (non-zero voxels).

Brain size estimation

To estimate the values for our confound, global brain size, we
calculated for each subject the total number of non-zero voxels
in the gray matter and white matter map resulting from the seg-
mentation step in the FSL-VBM pipeline (using FSL’s segmen-
tation algorithm “FAST”; Zhang et al., 2001). The number of
non-zero voxels from the gray matter map was used as the con-
found for the VBM-based analyses and the number of non-zero
voxels from the white matter map was used as the confound for

64



3.2. Methods

the TBSS-based analyses. Note that brain size estimates from to-
tal white matter volume and total gray matter volume correlated
strongly, r(216) = 0.93, p < 0.001.

Data and code availability

In the Github repository corresponding to this article
(https://github.com/lukassnoek/MVCA), we included a script
(download_data.py) to download the data (the 4D VBM and
TBSS nifti-images as well as the non-zero 2D samples × features
arrays). The repository also contains detailed Jupyter notebooks
with the annotated empirical analyses and simulations reported
in this article.

Decoding pipeline
All empirical analyses and simulations used a common decod-
ing pipeline, implemented using functionality from the scikit-
learn Python package for machine learning (Abraham et al.,
2014; Pedregosa et al., 2011). This pipeline included univari-
ate feature selection (based on a prespecified amount of vox-
els with highest univariate difference in terms of the ANOVA
F-statistic), feature-scaling (ensuring zero mean and unit stan-
dard deviation for each feature), and a support vector classifier
(SVC) with a linear kernel, fixed regularization parameter (C =
1), and sample weights set to be inversely proportional to class
frequency (to account for class imbalance). In our empirical
analyses, we evaluated model performance for different num-
bers of voxels (as selected by the univariate feature selection).
For our empirical analyses, we report model performance as the
F1 score, which is insensitive to class imbalance (which, in ad-
dition to adjusted sample weights, prevents the classifier from
learning the relative probabilities of target classes instead of rep-
resentative information in the features; see also Supplementary
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Figure B.14 for a replication of part of the results using AU-
ROC, another metric that is insensitive to class imbalance). At
chance level classification, the F1 score is expected to be 0.5. For
our simulations, in which there is no class imbalance, we report
model performance using accuracy scores. In figures showing
error bars around the average model performance scores, the
error bars represent 95% confidence intervals estimated using
the “bias-corrected and accelerated” (BCA) bootstrap method
using 10,000 bootstrap replications (Efron, 1987). For calculat-
ing BCA bootstrap confidence intervals, we used the implemen-
tation from the open source “scikits.bootstrap” Python pack-
age (https://github.com/cgevans/scikits-bootstrap). Statistical
significance was calculated using non-parametric permutation
tests, as implemented in scikit-learn, with 1000 permutations
(Ojala & Garriga, 2010).

Evaluated methods for confound control
Post hoc counterbalancing

We implemented post hoc counterbalancing in two steps. First,
to quantify the strength of relation between the confound and
the target in our dataset, we estimated the point-biserial corre-
lation coefficient between the confound, C (brain size), and the
target, y (gender) across the entire dataset (including all samples
i = 1 . . . N). Because of both sampling noise and measurement
noise, sample correlation coefficients vary around the popula-
tion correlation coefficient and are thus improbable to be 0 ex-
actly.10 Therefore, in the next step, we subsampled the data until

10For continuous confounds, it is practically impossible to achieve a cor-
relation with the target of exactly zero, which is the reason we subsample
until it is smaller than a prespecified threshold. For categorical confounds,
however, a correlation between the confound and the target of exactly zero
is possible (this amounts to equal proportions of levels of c within each class
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the correlation coefficient between and becomes non-significant
at some significance threshold α: p(rCy) > α.

In our analyses, we used an α of 0.1. Note that this is more
“strict”11 than the conventionally used threshold (α = 0.05), but
given that decoding analyses are often more sensitive to signal in
the data (whether it is confounded or true signal), we chose to
err on the safe side and counterbalance the data using a relatively
strict threshold of α = 0.1.

Subsampling was done by iteratively removing samples that
contribute most to the correlation between the confound and
the target until the correlation becomes non-significant. In our
empirical data in which brain size is positively correlated with
gender (coded as male = 1, female = 0) this amounted to itera-
tively removing the male subject with the largest brain size and
the female subject with the smallest brain size. This procedure
optimally balances (1) minimizing the correlation between tar-
get and confound and (2) maximizing sample size. As an al-
ternative to this “targeted subsampling”, we additionally imple-
mented a procedure which draws random subsamples of a given
sample size until it finds a subsample with a non-significant cor-
relation coefficient. If such a subsample cannot be found after
10,000 random draws, sample size is decreased by 1, which is
repeated until a subsample is found. This procedure resulted in
much smaller subsamples than the targeted subsampling pro-
cedure (i.e., a larger power loss) since the optimal subsample is
hard to find randomly.12 In the analyses below, therefore, we
of y; Görgen et al., 2017), even necessary, because it is impossible to find a
(K-fold) cross-validation partitioning in which each split is counterbalanced
w.r.t. the confound if the correlation in the entire dataset between the target
and the confound is not zero.

11We refer to a relatively high α as “strict”, here, because we use it here for
the purpose of demonstrating no effect.

12One could run the “random subsampling” procedure with more than
10,000 draws in order to reduce the aforementioned power loss; but in the
extreme, this would result in the same optimal subsample that can be found
much faster by targeted subsampling.

67



3.2. Methods

used the targeted subsampling procedure. Importantly, even
with extreme power loss, random subsampling can cause the
same biases as will be described for the targeted subsampling
method below (cf. Figure 3.8 and Figure 3.10 and Supplemen-
tary Figures B.13 and B.14).

Then, given that the subsampled dataset is counterbal-
anced with respect to the confound, a random stratified K-
fold cross-validation scheme is repeatedly initialized until a
scheme is found in which all splits are counterbalanced as
well (cf. Görgen et al., 2017). This particular counterbalanced
cross-validation scheme is subsequently used to cross-validate
the MVPA pipeline. We implemented this post hoc counter-
balancing method as a scikit-learn-style cross-validator class,
available from the aforementioned Github repository (in the
counterbalance.py module).

Confound regression

In our empirical analyses and simulations, we tested two dif-
ferent versions of confound regression, which we call “whole-
dataset confound regression” (WDCR) and “cross-validated
confound regression” (CVCR). In WDCR, we regressed out the
confounds from the predictors from the entire dataset at once,
i.e., before entering the iterative cross-validated MVPA pipeline
(the approach taken by Abdulkadir et al., 2014; Dubois et al.,
2018; Kostro et al., 2014; Todd et al., 2013). Note that we can do
this for all K voxels at once using the closed-form OLS solution,
in which we first estimated the parameters β̂C:

β̂C = (CTC)−1CTX (3.5)

where C is an array in which the first column contained an
intercept and the second column contained the confound brain
size. Accordingly, β̂C is an 2 × K array. We then removed the
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variance associated with the confound from our neuroimaging
data as follows:

Xcorr = X − Cβ̂C (3.6)

Now, Xcorr is an array with the same shape as the original X
array, but without any variance that can be explained by con-
found, C (i.e., X is residualized with regard to C).

In our proposed cross-validated version of confound regres-
sion (which was mentioned but not evaluated by Rao et al., 2017,
p. 25), “CVCR”, we similarly regressed out the confounds from
the neuroimaging data, but instead of estimating β̂C on the en-
tire dataset, we estimated this within each fold of training data
(Xtrain):

β̂C,train = (CT
trainCtrain)−1CT

trainXtrain (3.7)

And we subsequently used these parameters (β̂C,train) to re-
move the variance related to the confound from both the train
set (Xtrain and Ctrain):

Xtrain,corr = Xtrain − Ctrain β̂C,train (3.8)

and the test set (Xtest and Ctest):

Xtest,corr = Xtest − Ctest β̂C,test (3.9)

Thus, essentially, CVCR is the cross-validated version of
WDCR. One might argue that regressing the confound from the
train set only, i.e., implementing only equation (3.8), not equa-
tion (3.9), is sufficient to control for confounds as it prevents the
decoding model from relying on signal related to the confound.
We evaluated this method and report the corresponding results
in Supplementary Figure B.10.
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We implemented these confound regression techniques as a
scikit-learn compatible transformer class, available in the open-
source skbold Python package (https://github.com/lukassnoek/
skbold) and in the aforementioned Github repository.

Control for confounds during pattern estimation

In addition to post hoc counterbalancing and confound regres-
sion, we also evaluated how well the “control for confounds dur-
ing pattern estimation” method controls for the influence of
confounds in decoding analyses of (simulated) fMRI data. The
simulation methods and results can be found in the Supplemen-
tary Materials.

Analyses of simulated data
In addition to the empirical evaluation of counterbalancing and
confound regression in the gender decoding example, we ran
three additional analyses on simulated data. First, we inves-
tigated the efficacy of the three confound control methods on
synthetic data with known quantities of “true signal” and “con-
founded signal”, in order to detect potential biases. Second, we
ran additional analyses on simulated data to investigate the posi-
tive bias in model performance observed after post hoc counter-
balancing. Third, we ran additional analyses on simulated data
to investigate the negative bias in model performance observed
after WDCR. In the Supplementary Materials, we investigate
whether the confound regression results generalize to (simu-
lated) functional MRI data (Supplementary Figure B.1 and B.2).

Efficacy analyses

In this simulation, we evaluated the efficacy of the three meth-
ods for confound control on synthetic data with a prespecified
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correlation between the confound and the target, rCy, and vary-
ing amounts of “confounded signal” (i.e., the explained variance
in y driven by shared variance between X and y). These simula-
tions allowed us to have full control over (and knowledge of) the
influence of both signal and confound in the data, and thereby
help us diagnose biases associated with post hoc counterbalanc-
ing and confound regression.

Specifically, in this efficacy analysis, we generated hypothet-
ical data sets holding the correlation coefficient between C and
y constant, while varying the amount of true signal and con-
founded signal. We operationalized true signal as the squared
semipartial Pearson correlation between y and each feature in X,
controlled for C. As such, we will refer to this term as signal R2:

signal R2 = r2
y(X.C) (3.10)

In the simulations reported and shown in the main article,
we used rCy = 0.65, which corresponds to the observed correla-
tion between brain size and gender in our dataset. To generate
synthetic data with this prespecified structure, we generated (1)
a data matrix X of shape N × K, (2) a target variable y of shape
N×1, and (3) a confound variable C of shape N×P. For all simu-
lations, we used the following parameters: N = 200, K = 5, and
P = 1 (i.e., a single confound variable). We generated y as a cat-
egorical variable with binary values, y ∈ {0, 1}, with equal class
probabilities (i.e., 50%), given that most decoding studies focus
on binary classification. We generated C as a continuous ran-
dom variable drawn from a standard normal distribution. We
generated each feature Xj as a linear combination of y and C plus
Gaussian noise. Thus, for each predictor j = 1 . . . K in Xj:

Xj = βyy + βCC + ε, ε ∼ N (0, γ) (3.11)

in which βy represented the weight given to y, and βC rep-
resented the weight given to C in the generation of the feature
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Xj, and N (0, γ) is the normal distribution with zero mean and
standard deviation γ. The parameters βy and βC were both ini-
tialized with a value of 1. First, if the difference between the to-
tal variance explained and the sum of the desired signal R2 and
confound R2 values was larger than 0.01, the standard deviation
of the normal distribution from which the errors were drawn
(i.e., γ) was adjusted (decreased with 0.01 when the total R2 is
too low, increased with 0.01 when the total R2 is too high), after
which was generated again. This process was iterated until the
target total R2 value is found. Then, the total variance explained
was partitioned into confound R2 and signal R2. If one or both of
these values differed from the targeted values by more than 0.01,
the generative parameters βy and βC were adjusted: if signal R2 is
too low, was increased with 0.01, and decreased with 0.01 other-
wise. If confound R2 is too low, βC was increased with 0.01, and
decreased with 0.01 otherwise. After adjusting these parame-
ters, Xj was generated again. This process was iterated until the
data contain the desired “true signal” and “confounded signal”.

We evaluated the different methods for confound control for
two values of signal R2 (0.004, representing plausible null data,13

and 0.1, representing a plausible true effect) and a range of con-
found R2 values (in steps of 0.05: 0.00, 0.05, 0.10, . . . , 0.35).
This simulation was iterated 10 times (with different partitions
of the folds) to ensure the results were not influenced by random
noise. Importantly, the specific scenario in which confound R2

equals 0, which represents data without any confounded signal
(r2

yX), served as “reference model performance” to which we can
compare the efficacy the confound control methods. This com-
parison allowed us to detect potential biases.

13Note that plausible null data do not reflect a signal R2 of 0, because
this statistic is biased towards values larger than 0 (because it represents a
squared number) when dealing with noisy data, hence our choice of signal
R2 = 0.004.
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After the data were generated, a baseline model (no con-
found control) and the three methods outlined above (post hoc
counterbalancing, WDCR, and CVCR) were applied to the sim-
ulated data using the standard pipeline described in the Decod-
ing pipeline section (but without univariate feature selection)
and compared to the reference performance.

Analysis of positive bias after post hoc counterbalancing

As detailed below, post hoc counterbalancing did not lead to
the expected decrease in model performance; instead, there ap-
peared to be a trend towards an increase in model performance.
To further investigate the cause of this unexpected result, we
simulated a multivariate normal dataset with three variables, re-
flecting our data (X), target (y), and confound (C), with 1000
samples (N) and a single feature (K = 1). We iterated this data
generation process 1000 times and subsequently selected the
dataset which yielded the largest (positive) difference between
model performance after post hoc counterbalancing versus no
confound control. In other words, we used the dataset in which
the counterbalancing issue was most apparent. While not nec-
essarily representative of typical (neuroimaging) datasets, this
process allowed us to explain and visualize how it is possible that
model performance increases after counterbalancing the data.

To generate data from a multivariate normal distribution,
we first generated variance-covariance matrices with unit vari-
ance for all variables, so that covariances can be interpreted as
correlations. The covariances in the matrix were generated as
pairwise correlations (ryX, rCy, rCX), each sampled from a uni-
form distribution with range [−0.65, 0.65]. We generated data
using such prespecified correlation structure because the rela-
tive increase in model performance after counterbalancing did
not appear to occur when generating completely random (nor-
mally distributed) data. Moreover, we restricted the range of the
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uniform distribution from which the pairwise correlations are
drawn to [−0.65, 0.65] because a larger range can result in co-
variance matrices that are not positive-semidefinite. After gen-
erating the three variables, we binarized the target variable (y)
using a mean-split (y = 0 if y < ȳ, y = 1 otherwise) to frame
the analysis as a classification problem rather than a regression
problem.

We then subsampled the selected dataset using our post hoc
counterbalancing algorithm and subsequently ran the decod-
ing pipeline (without univariate feature selection) on the sub-
sampled (“retained”) data in a 10-fold stratified cross-validation
scheme. Notably, we cross-validated our fitted pipeline not only
to the left-out retained data, but also to the data that did not
survive the subsampling procedure (the rejected data; see Fig-
ure 3.3). Across the 10 folds, we kept track of two statistics from
the retained and rejected samples: (1) the classification perfor-
mance, and (2) the signed distance to the decision boundary.
Negative distances in binary classification (in simple binary clas-
sification with y ∈ {0, 1}) reflect a prediction of the sample as
y = 0, while positive distances reflect a prediction of the sample
as y = 1. As such, a correctly classified sample of class 0 has a
negative distance from the decision boundary, while a correctly
classified sample of class 1 has a positive distance from the deci-
sion boundary. Here, however, we wanted to count the distance
of samples that are on the “incorrect” side of the decision bound-
ary as negative distances, while counting the distance of samples
that are on the “correct” side of the decision boundary as positive
distances. To this end, we used a “re-coded” version of the tar-
get variable (y∗ = −1 if y = 0, y∗ = 1 otherwise) and multiplied
it with the distance. Consequently, negative distances of correct
samples of condition 0 become positive and positive distances
of incorrect samples of condition 0 become negative (by multi-
plying them by −1). As such, we calculated the signed distance
from the decision boundary (δi) for any sample i as:
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δi = y∗(wTXi + b) (3.12)

in which w refers to the feature weights (coefficients) and b
refers to the intercept term. Any differences in these two statis-
tics (proportion correctly classified and signed distance to the
classification boundary) between the retained and rejected sam-
ples may signify biases in model performance estimates (i.e., bet-
ter cross-validated model performance on the retained data than
on the rejected data would confirm positive bias, as it indicates
that subsampling tends to reject hard-to-classify samples). We
applied this analysis also to the empirical data (separately for the
different values of K) to show that the effect of counterbalancing,
as demonstrated using simulated data, also occurs in the empir-
ical data.

Analysis of negative bias after WDCR

As also detailed below, WDCR can lead to significantly below
chance accuracy. To investigate the cause of this below chance
performance (and to demonstrate that CVCR does not lead to
such results), we performed two follow-up simulations. The first
follow-up simulation shows that the occurrence of below chance
accuracy depends on the distribution of feature-target correla-
tions (ryX; see for a similar argument Jamalabadi et al., 2016),
and the second follow-up simulation shows that WDCR artifi-
cially narrows this distribution. This artificial narrowing of the
distribution is exacerbated both by an increasing number of fea-
tures (K), as well as higher correlations between the target and
confound (rCy).

In the first simulation, we simulated random null data
(drawn from a standard normal distribution) with 100 sam-
ples (N) and 200 features (K), as well as a binary target feature
(y ∈ {0, 1}). We then calculated the cross-validated prediction
accuracy using the standard pipeline (without univariate feature
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Figure 3.3 Visualization of method to evaluate whether counterbalancing
yields unbiased cross-validated model performance estimates.

selection) described in the Decoding pipeline section; we iterate
this process 500 times. Then, we show that the variance of the
cross-validated accuracy is accurately predicted by the standard
deviation (i.e., “width”) of the distribution of correlations be-
tween the features and the target (ryXj with j = 1 . . . K), which
we will denote by sd(ryX). Importantly, we show that below
chance accuracy likely occurs when the standard deviation of
the feature-target correlation distribution is lower than the stan-
dard deviation of the sampling distribution of the Pearson corre-
lation coefficient parameterized with the same number of sam-
ples (N = 200) and the same effect size (i.e., ρ = 0, because we
simulated random null data). The sampling distribution of the
Pearson correlation coefficient is described by Kendall & Stuart
(1973). When ρ = 0 (as in our simulations), the equation is as
follows:
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f(r; N) = (1 − r2)
N−4

2 [B]( 1
2
,
N − 2

2
)−1 (3.13)

where B(a, b) represents the Beta-function.
Then, in a second simulation, we similarly simulated null

data as in the previous simulation, but now we also generate a
continuous confound (C) with a varying correlation with the tar-
get (rCy ∈ {0.0, 0.1, 0.2, . . . , 1.0}). Before subjecting the data to
the decoding pipeline, we regressed out the confound from the
data (i.e., WDCR). We did this for different numbers of features
(K ∈ {1, 5, 10, 50, 100, 500, 1000}). Then, we applied CVCR on
the simulated data as well for comparison.

3.3 Results

Influence of brain size
Before evaluating the different methods for confound control,
we determined whether brain size is truly a confound given our
proposed definition (“a variable that is not of primary interest,
correlates with the target, and is encoded in the neuroimaging
data”). We evaluated the relationship between the target and the
confound in two ways. First, we calculated the (point-biserial)
correlation between gender and brain size, which was signifi-
cant for both the estimation based on white matter, r(216) =
.645, p < 0.001, and the estimation based on grey matter,
r(216) = .588, p < 0.001, corroborating the findings by Smith
& Nichols (2018). Second, as recommended by Görgen et al.
(2017), who argue that the potential influence of confounds can
be discovered by running a classification analysis using the con-
found as the (single) feature predicting the target, we ran our
decoding pipeline (without univariate feature selection) using
brain size as a single feature to predict gender. This analysis
yielded a mean classification performance (F1 score) of 0.78 (SD
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Figure 3.4 A) Model performance when using brain size to predict gender
for both brain-size estimated from grey matter (left) and from white matter
(right). Points in yellow depict individual F1 scores per fold in the 10-fold
cross-validation scheme. Whiskers of the box plot are 1.5x the interquar-
tile range. B) Distributions of observed correlations between brain size and
voxels (rXC), overlayed with the analytic sampling distribution of correlation
coefficients when ρ = 0 and N = 217, for both the VBM data (left) and
TBSS data (right). Density estimates are obtained by kernel density esti-
mation with a Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth
selection.

= .10) when using brain size estimated from white matter and
0.81 (SD = .09) when using brain size estimated from gray mat-
ter, which are both significant with p < 0.001 (see Figure 3.4A).

To estimate whether brain size is encoded in the neuroimag-
ing data, we compared the distribution of bivariate correlation
coefficients (of each voxel with brain size) with the sampling dis-
tribution of correlation coefficients when ρ = 0 and N = 217
(see section Analysis of negative bias after WDCR for details).
Under the null hypothesis that there are no correlations between
brain size and voxel intensities, each individual correlation co-
efficient between a voxel and the confound can be regarded as
an independent sample with N = 217 (ignoring correlations be-
tween voxels for simplicity). Because K is very large for both
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the VBM and TBSS data, the empirical distribution of correla-
tion coefficients should, under the null hypothesis, approach the
analytic distribution of correlation coefficients parametrized by
ρ = 0 and N = 217. Contrarily, the density plots in Fig. 3.4B
clearly show that the observed correlation coefficients distribu-
tion does not follow the sampling distribution (with both an in-
crease in variance and a shift of the mode). This indicates that
at least some of the correlation coefficients between voxel inten-
sities and brain size are extremely unlikely under the null hy-
pothesis. Note that this interpretation is contingent on the as-
sumption that the relation between brain size and VBM/TBSS
data is linear. In the Supplementary Materials and Results (Sup-
plementary Figures B.7-B.9), we provide some evidence for the
validity of this assumption.

Baseline model: no confound control
In our baseline model on the empirical data, for different num-
bers of voxels, we predicted gender from structural MRI data
(VBM and TBSS) without controlling for brain size (see Figure
3.5). The results show significant above chance performance of
the MVPA pipeline based on both the VBM data and the TBSS
data. All performance scores averaged across folds were signifi-
cant (p < 0.001).

These above chance performance estimates replicate previ-
ous studies on gender decoding using structural MRI data (Del
Giudice et al., 2016; Rosenblatt, 2016; Sepehrband et al., 2018)
and will serve as a baseline estimate of model performance to
which the confound control methods will be compared.

In the next three subsections, we will report the results
from the three discussed methods to control for confounds:
post hoc counterbalancing, whole-dataset confound regression
(WDCR), and cross-validated confound regression (CVCR).
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Figure 3.5 Baseline scores using the VBM (left) and TBSS (right) data
without any confound control. Scores reflect the average F1 score across
10 folds; error bars reflect 95% confidence intervals. The dashed black line
reflect theoretical chance-level performance and the dashed orange line
reflects the average model performance when only brain size is used as a
predictor for reference; Asterisks indicates significant performance above
chance: *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

Post hoc counterbalancing
Empirical results

In order to decorrelate brain size and gender (i.e., rCy > 0.1), our
subsampling algorithm selected 117 samples in the VBM data
(i.e., a sample size reduction of 46.1%) and 131 samples in the
TBSS data (i.e., a reduction of 39.6%). The model performance
for different values of (number of voxels) are shown in Figure
3.6. Contrary to our expectations, the predictive accuracy of our
decoding pipeline after counterbalancing was similar to baseline
performance. This is particularly surprising in light of the large
reductions in sample size, which results in a substantial loss in
power, which in turn is expected to lead to lower model perfor-
mance.

One could argue that the lack of expected decrease in model
performance after counterbalancing can be explained by the
possibility that the subsampling and counterbalancing proce-
dure just leads to the selection of different features during uni-
variate feature selection compared to the baseline model. In
other words, the increase in model performance may be caused
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Figure 3.6 Model performance after counterbalancing (green) versus the
baseline performance (blue) for both the VBM (left) and TBSS (right) data
(upper row) and the difference in performance between the methods (lower
row). Performance reflects the average (difference) F1 score across 10
folds; error bars reflect 95% confidence intervals. The dashed black line
reflect theoretical chance-level performance (0.5) and the dashed orange
line reflects the average model performance when only brain size is used
as a predictor. Asterisks indicates significant performance above chance:
*** = p < 0.001, ** = p < 0.01, * = p < 0.05.

by the feature selection function, which selects “better” vox-
els (i.e., containing more “robust” signal), resulting in similar
model performance in spite of the reduction in sample size.
However, this does not explain the similar scores for counter-
balancing and the baseline model when using all voxels (the data
points at ‘K voxels = . . . (all)’ in Figure 3.6). Another possibil-
ity for the relative increase in model performance based on the
counterbalanced data versus the baseline model is that counter-
balancing increased the amount of signal in the data. Indeed,
counterbalancing appeared to increase the (absolute) correla-
tions between the data and the target (ryX), which is visualized
in Figure 3.7, suggesting an increase in signal.

This apparent increase in the correlations between the target
and neuroimaging data goes against the intuition that remov-
ing the influence of a confound that is highly correlated with the
target will reduce decoding performance. To further investigate
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Figure 3.7 Density plots of the correlations between the target and voxels
across all voxels before (blue) and after (green) subsampling for both the
VBM and TBSS data. Density estimates are obtained by kernel density es-
timation with a Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth
selection.

this, we replicated this effect of post hoc counterbalancing on
simulated data, as described in the next section (Efficacy analy-
ses), and additionally investigated the cause of the negative bias
observed after WDCR using a separate set of simulations.

Efficacy analysis

To evaluate the efficacy of the three confound control meth-
ods, we simulated data in which we varied the strength of con-
found R2 and signal R2, after which we applied the three con-
found control methods to the data. The results of this analysis
show that counterbalancing maintains chance-level model per-
formance when there is almost no signal in the data (i.e., signal
R2 = 0.004; Figure 3.8, left graph, green line). However, when
there is some signal (i.e., signal R2 = 0.1; Fig. 8, right graph),
we observed that counterbalancing yields similar or even higher
scores than the baseline model, replicating the effects observed
in the empirical analyses.
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Figure 3.8 Results from the different confound control methods on simu-
lated data without any experimental effect (signal R2 = 0.004; left graph)
and with some experimental effect (signal R2 = 0.1; right graph) for dif-
ferent values of confound R2. The orange line represents the average per-
formance (±1 SD) when confound R2 = 0, which serves as a “reference
performance” for when there is no confounded signal in the data. For both
graphs, the correlation between the target and the confound, ryC, is fixed at
0.65. The results from the WDCR and CVCR methods are explained later.

As is apparent from Figure 3.8 (right panel), when there is
some signal, the counterbalanced data seem to yield better per-
formance than the baseline model only for relatively low con-
found R2 values (confound R2 < 0.15). As suggested by our find-
ings in the empirical data (see Figure 3.7), we hypothesized that
the observed improvement in model performance after coun-
terbalancing was caused by the increase in correlations between
the target and features in the neuroimaging data. In support of
this hypothesis, Figure 3.9 illustrates the relations between the
strength of the confound (confound R2, color coded), the in-
crease in correlations after post hoc counterbalancing (δryX =
rafter
yX − rafter

yX ; x-axis) for each confound R2, and the resulting dif-
ference in model performance (ACCCB − ACCbaseline; y-axis).
The figure shows that the increase or decrease in accuracy af-
ter counterbalancing (compared to baseline) depends on δryX
(r(79) = .922, p < 0.001), which in turn depends on confound
R2 (r(79) = −0.987, p < 0.001). To reiterate, these differences
in model performance are only due to the post hoc counterbal-
ancing procedure and not due to varying signal in the simulated
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Figure 3.9 The relationship between the increase in correlations be-
tween target and data (ryX) after subsampling, confound R2, difference in
model performance (here: accuracy) between the counterbalance model
and baseline model (ACCCB − ACCbaseline).

data. The effect of post hoc counterbalancing on model perfor-
mance thus seems to depend on the strength of the confound.

While this relationship in Figure 3.9 might be statistically
interesting, it does not explain why post hoc counterbalancing
tends to increase the correlations between neuroimaging data
and target, and even outperforms the baseline model when con-
found R2 is low and some signal is present. More importantly,
it does not tell us whether the post hoc counterbalancing pro-
cedure uncovers signal that is truly related to the target — in
which case the procedure suppresses noise — or inflates perfor-
mance estimates and thereby introduces positive bias. There-
fore, in the next section, we report and discuss results from a
follow-up simulation that intuitively shows why post hoc coun-
terbalancing leads to an increase in performance, and further-
more shows that this increase is in fact a positive bias.
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Analysis of positive bias after post hoc counterbalancing

With this follow-up analysis, we aimed to visualize the scenario
in which post hoc counterbalancing leads to a clearly better per-
formance than model performance without confound control.
As such, we generated 1000 data sets using a covariance matrix
that we knew leads to a large difference between the baseline
model and model performance after counterbalancing (i.e., data
with a low confound R2). From these 1000 datasets, we selected
the dataset that yielded the largest difference for our visualiza-
tion (see the Analysis of positive bias after post hoc counterbal-
ancing section in the Methods for details).

The data that yielded the largest difference (i.e., a perfor-
mance increase from 0.613 to 0.804, a 31% increase) are visu-
alized in Figure 3.10. Each sample’s confound value (C) is plot-
ted against its feature value (X), both before subsampling (upper
scatter plot) and after subsampling (lower scatter plot). From vi-
sual inspection, it appears that the samples rejected by the sub-
sampling procedure (i.e., the samples with the white border)
have relatively large absolute values of the confound variable,
which tend to lie close to or on the “wrong” side of the clas-
sification boundary (i.e., the dashed black line) in this specific
configuration of the data. In other words, subsampling seems to
reject samples that are harder to classify or would be incorrectly
classified based on the data (here, the single feature of X). The
density plots in Figure 3.10 show the same effect in a different
way: while the difference in the modes of the distributions of
the confound (C) between classes is reduced after subsampling
(i.e., the density plots parallel to the y-axis), the difference in the
modes of the distributions of the data (X) between classes is ac-
tually increased after subsampling (i.e., the density plots parallel
to the x-axis).

We quantified this effect of subsampling by comparing the
signed distance from the decision boundary (i.e., the dashed
line in the upper scatter plot) between the retained samples and
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Figure 3.10 Both scatterplots visualize the relationship between the data
(X with K = 1, on the x-axis), the confound (C, on the y-axis) and the tar-
get (y). Dots with a white border in the upper scatterplot indicate samples
that are rejected in the subsampling process; the lower scatterplot visual-
izes the data without these rejected samples. The dashed black lines in the
scatterplot represent the decision boundary of the SVM classifier; the color
of the background shows how samples in that area are classified (a blue
background means a prediction of y = 0 and a green background means
a prediction of y = 1). The density plots parallel to the y-axis depict the
distribution of the confound (C) for the samples in which y = 0 (blue) and
in which y = 1 (green). The density plots parallel to x-axis depict the dis-
tribution of the data (X) for the samples in which y = 0 (blue) and in which
y = 1 (green). Density estimates are obtained by kernel density estimation
with a Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth selec-
tion.
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the rejected (subsampled) samples, in which a larger distance
from the decision boundary reflects a higher confidence of the
classifier’s prediction (see Figure 3.3 for a visualization of this
method). Indeed, we found that samples that are removed by
subsampling lie significantly closer to (or on the “wrong” side
of) the decision boundary (M = -.358, SD = .619) than sam-
ples that are retained after subsampling (M = .506, SD = .580),
as indicated by an independent samples t-test, t(998) = 22.32,
p < 0.001. Also (which follows from the previous observation),
samples that would have been removed by subsampling are more
often classified incorrectly (75% incorrect) than the samples that
would have been retained by subsampling (20% incorrect), as in-
dicated by a chi-squared test, χ2 = 270.29, p < 0.001.

To show that the same effect (i.e., removing samples that
tend to be hard to classify or would be wrongly classified) oc-
curred in the empirical data after counterbalancing as well, we
applied the same analysis of comparing model performance and
distance to boundary between the retained and rejected sam-
ples to the empirical data. Indeed, across all different numbers
of voxels (K), the retained samples were significantly more often
classified correctly (Figure 3.11A) and had a significantly larger
distance to the classification boundary (Figure 3.11B) than the
rejected samples. This demonstrates that the same effect of post
hoc counterbalancing, as shown in the simulated data, likely un-
derlies the increase in model performance of the counterbal-
anced data relative to the baseline model in the empirical data.

One can wonder how much the occurrence of these ob-
served biases in post hoc counterbalancing depends on the spe-
cific method of subsampling used. Random subsampling led to
qualitatively similar results as targeted subsampling (cf. Supple-
mentary Figures B.13 and B.14 with random subsampling). In-
stead, the bias is introduced through features that weakly cor-
relate with the target in the whole sample, but strongly in sub-
samples where there is no correlation between target and the
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Figure 3.11 A) The proportion of samples classified correctly, separately
for the “retained” samples (blue line) and “rejected” samples (green line); the
dashed line represents chance level (0.5). B) The average distance to the
classification boundary for the retained and rejected samples; the dashed
line represents the decision boundary, with values below the line represent-
ing samples on the “wrong” side of the boundary (and vice versa). Asterisks
indicates a significant difference between the retained and rejected sam-
ples: *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

confound (features which, as our results show, exist in the neu-
roimaging data). That is, the bias is an indirect result of decor-
relating target and confound in the sample, which is an essential
step in post hoc counterbalancing (in fact, it is the goal of coun-
terbalancing). For this reason, we consider it unlikely (but not
impossible) that there exists a way to subsample data without
introducing biases.

In summary, removing a subset of observations to correct
for the influence of a confound can induce substantial bias by
removing samples that are harder to classify using the available
data. The bias itself can be subtle (e.g., in our empirical results,
the predictive performance falls in a realistic range of predic-
tive performances), and could remain undetected when present.
Therefore, we believe that post hoc counterbalancing by subsam-
pling the data is an inappropriate method to control for con-
founds.
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Figure 3.12 Model performance after WDCR (orange) versus the base-
line performance (blue) for both the VBM (left) and TBSS (right) data. Per-
formance reflects the average F1 score across 10 folds; error bars reflect
95% confidence intervals. The dashed black line reflect theoretical chance-
level performance (0.5) and the dashed orange line reflects the average
model performance when only brain size is used as a predictor. Asterisks
indicates performance of the WDCR model that is significantly above or be-
low chance: *** = p < 0.001, ** = p < 0.01, * = p < 0.05.

Whole-dataset confound regression (WDCR)
Empirical results

In addition to post hoc counterbalancing, we evaluated the ef-
ficacy of “whole-dataset confound regression” (WDCR), i.e. re-
gressing out the confound from each feature separately using all
samples from the dataset to control for confounds. Compared to
the baseline model, WDCR yielded a strong decrease in perfor-
mance, even dropping (significantly) below chance for all TBSS
analyses and a subset of the VBM analyses (see Figure 3.12).

This strong (and implausible) reduction in model perfor-
mance after WDCR is investigated in more detail in the next
two sections on the results from the simulations.
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Efficacy analysis

The results from the analyses investigating the efficacy of the
confound control methods (see Figure 3.8) show that WDCR ac-
curately corrects for the confound in both in data without signal
(i.e., when signal R2 = 0.004) and in data with some signal (i.e.,
when signal R2 = 0.1), as evident from the fact that the perfor-
mance after WDCR is similar to the reference performance. This
result (i.e., plausible performance after confound control) stands
in contrast to the results from the empirical analyses, which is
why we ran a follow-up analysis on simulated data to investigate
this specific issue.

Analysis of negative bias after WDCR

Inspired by the work of Jamalabadi et al. (2016) on below chance
accuracy in decoding analyses, we ran several follow-up analy-
ses to get insight into why WDCR leads to below chance model
performance. As Jamalabadi et al. show, below chance model
performance occurs when the data contain little signal. In our
first follow-up simulation, we sought to refine the explanation
of the cause of below chance model performance by linking it
to the observed standard deviation of the empirical distribu-
tion of correlations between the data (X) and the target (y).
To do so, we simulated random data (X) and a binary target
(y ∈ {0, 1}) and estimated (per fold) the cross-validated clas-
sification accuracy using the standard pipeline described in the
methods section. We repeated this process 500 times, yielding
500 data sets. The expected average predictive accuracy for each
dataset is 0.5, but this varies randomly across folds and itera-
tions. We hypothesized that this variance can be explained by
the standard deviation (“width”) of the initial feature-target cor-
relation distribution, sd(rXy): narrower distributions may yield
relatively lower cross-validated classification accuracy than rela-
tively wider feature-target correlation distributions. Indeed, we
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Figure 3.13 A) The relationship between the standard deviation of the
distribution of feature-target correlations, sd(ryX), and accuracy across it-
erations of cross-validated classification analyses of null data. The vertical
dashed line represents the standard deviation from the sampling distribution
parameterized with ρ = 0 andN = 100 (i.e., the same parameters used to
generate the null data); the horizontal dashed line represents the expected
accuracy for data with this standard deviation based on the regression line
estimated from the data across simulations (see Supplementary Figure B.15
for the same plot with different values for N). B) The relationship between
the proportion of features of which the sign of their correlation with the tar-
get (rXy) “flips” between the train-set and the test-set and accuracy. The
vertical dashed line represents a proportion of 0.5., i.e., 50% of the features
flip their correlation sign, which corresponds approximately with an accu-
racy of 0.5. C) The relationship between the weighted difference between
feature-target correlations in the train and test set (see equation (3.14)) and
accuracy.

find that the initial standard deviation of this distribution is sig-
nificantly correlated with the cross-validated accuracy, r(499) =
0.73, p < 0.001 (Figure 3.13A). Importantly, we find that this
relationship holds for different values of N (see Supplementary
Figure B.15, for different sizes of the test set (see Supplementary
Figure B.16), and for different sizes of K (see Supplementary Fig-
ure B.17).

This observation, then, begs the question: why do narrower-
than-chance correlation distributions lead to below chance ac-
curacy? One potential explanation of below chance accuracy is
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that the classifier may learn a particular (linear) relationship be-
tween features and the target in the train set (e.g., rXy = 0.05),
while the sign of this relationship is “flipped” in the test set
(e.g., rXy = −0.03; see Jamalabadi et al., 2016), which is known
in the machine learning literature as “dataset shift” (Quionero-
Candela et al., 2009). This situation would lead classifiers to pre-
dict the exact opposite classes for samples in the test set, leading
to below chance accuracy. In the results of our simulated data,
the standard deviation of the feature-target distribution was in-
deed significantly negatively correlated with the proportion of
features that flipped the sign of their correlation between the
train set and test set, r(499) = −.687, p < 0.001. This means
that a higher density of feature-target correlations around 0 (i.e.,
a narrower width of the corresponding distribution) leads to
more “sign flips”. This phenomenon of “sign flipping” has been
reported before in the context of (a priori) counterbalancing of
categorical variables (X) with respect to the target (y), where it
was observed that complete counterbalancing led to consistent
“sign flipping” and consequently 0% accuracy (Görgen et al.,
2017). Similarly, we found that the proportion of features that
flip sign was significantly negatively correlated with accuracy,
r = −.565, p < 0.001, indicating that larger proportions of fea-
tures that flip sign leads to lower accuracy (see Figure 3.13B).
Interestingly, at a proportion of 0.5, accuracy is approximately
at chance level (0.5; dashed lines in Figure 3.13B).

This relationship between “sign flipping” and accuracy,
however, leaves room for improvement in terms of explaining
the variance of accuracy scores. Therefore, we sought to further
refine our “model” of accuracy by defining dataset shift not by
the proportion of sign flips, but by the average difference between
the feature-target correlations between the train set and test set.
Moreover, because not all features contribute equally strongly to
a classifier’s prediction (i.e., they are weighted), we furthermore
weighed each feature’s “shift” by the associated classifier weight
(wj). Formally, we estimated dataset shift (d̂s) thus as follows:
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d̂s = 1
K

K∑
j=1

(rXj,train,ytrain − rXj,test,ytest)wj (3.14)

Indeed, the correlation between this particular operational-
ization of “dataset shift” and accuracy across simulations was
much higher than just the proportion of sign flips, r(499) =
0.934 (Figure 3.13B).

Having established the relation between the standard devia-
tion of the initial feature-target correlation distribution and ac-
curacy, we followed up our simulation by investigating specifi-
cally the effect of WDCR on the standard deviation of the corre-
lation distribution. We investigated this by simulating data with
different strengths of the correlation between the confound and
the target (rCy) and the number of features (K). From Figure
3.14A, it is clear that, while the expected chance level is 0.5 in all
cases, model performance quickly drops below chance for in-
creasing correlations between the target and the confound, as
well as for increasing numbers of features; even leading to a
model performance of 0% when the confound is perfectly corre-
lated with the target and when using 1000 features. Figure 3.14C
shows that, indeed, higher values lead to narrower correlation
distributions, which is shown in Figure 3.14D to yield relatively
lower accuracy scores.

In summary, our simulations show that below chance ac-
curacy is accurately predicted by the standard deviation (i.e.,
“width”) of the distribution of empirical feature-target correla-
tions and that WDCR reduces this standard deviation, which
explains why the empirical analyses yielded below chance model
performance (especially for larger numbers of voxels).
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Figure 3.14 A) The effect of WDCR on data varying in the correlation of
the confound with the target (rCy; x-axis) and the number of features (K;
different lines). B) The effect of CVCR on data varying in the correlation of
the confound with the target and the number of features. The dashed black
line represents chance model performance in subplots A and B. C) The re-
lation between the correlation of the confound with the target (rCy) and the
standard deviation of the feature-target correlation distribution, sd(ryX) for
the WDCR data. The dashed black line represents the standard deviation
of the correlation distribution predicted by the sampling distribution. D) The
relation of the standard deviation of the correlation distribution and accuracy
for the WDCR data (only shown for the data when K = 100; see Supple-
mentary Figure B.18 for visualizations of this effect for different values of
K). The data depicted in all panels are null data.

Cross-validated confound regression (CVCR)
Empirical results

As the results from the empirical analyses and simulations sug-
gest, the use of WDCR is problematic because of the partitioning
of the dataset into a separate train set and test set after confound
regression. As such, our proposed cross-validated confound re-
gression (CVCR) methods suggests to move the confound re-
gression procedure inside the cross-validation loop, thereby also
cross-validating this step. As expected, compared to the baseline
model (i.e., no confound control), the results from the empiri-
cal analyses using CVCR show reduced (but not below chance)
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Figure 3.15 Model performance after CVCR (pink) versus the baseline
performance (blue) for both the VBM (left) and TBSS (right) data. Perfor-
mance reflects the average F1 score across 10 folds; error bars reflect 95%
confidence intervals across 1000 bootstrap replications. The dashed black
line reflect theoretical chance level performance (0.5) and the dashed or-
ange line reflects the average model performance when only brain size is
used as a predictor. Asterisks indicates performance of the CVCR model
that is significantly above or below chance: *** = p < 0.001, ** = p < 0.01,
* = p < 0.05.

model performance for both VBM and TBSS data, and all differ-
ent numbers of voxels (see Figure 3.15). Notably, for some num-
bers of voxels, model performance was not significantly above
chance level.

We also evaluated whether regressing the confound from the
train set only was sufficient to control for confounds, but found
that it does not effectively control for confounds when there is
no true signal (i.e., there is positive bias), which is visualized in
more detail in Supplementary Figure B.10 (cf. Figure 3.8).

Efficacy analysis

Similar to WDCR, CVCR yielded plausible and unbiased model
performance (see Figure 3.8, pink line). Moreover, when applied
to the simulated null data, CVCR yielded model performance
scores at chance level across all levels of the confound-target cor-
relation and numbers of features (see Figure 3.14B).
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Figure 3.16 An overview of the empirical results on the four different con-
found methods: None, post hoc counterbalancing, WDCR, and CVCR.

Summary methods for confound control
In this section, we investigated the effects of different method
to control confounds (post hoc counterbalancing, WDCR, and
CVCR) on empirical MRI data and simulated data (see Figure
3.16 for a summary of the empirical results). Post hoc counter-
balancing was, at least using the subsampling method described,
clearly unable to effectively control for confounding influences,
which is putatively caused by indirect circularity in the analy-
sis process due to subsampling. Confound regression showed
an expected drop in model performance (but not below chance
level), but only when the confound regression step is properly
cross-validated (i.e., the CVCR version).

3.4 Discussion
Decoding analyses have become a popular alternative to univari-
ate analyses of neuroimaging data. This analysis approach, how-
ever, inherently suffers from ambiguity in terms of which source
of information is picked up by the decoder (Naselaris & Kay,
2015). Given that one is often interested in model interpretabil-
ity rather than merely accurate prediction (Hebart & Baker,
2017), one should strive to control for alternative sources of in-
formation (i.e., other than the target of interest) that might drive
decoding. Effectively controlling for these alternative sources
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of information, or confounds, helps in disambiguating decod-
ing models. In this article, we reviewed and tested two generic,
broadly applicable methods that aim to control for confounds
in decoding analyses: post hoc counterbalancing and confound
regression. Additionally, we proposed a third method that, un-
like the other two methods, has shown to effectively control for
confounds.

Both when applied to empirical and simulated data, we
found that neither post hoc counterbalancing nor (whole-
dataset) confound regression yielded plausible and unbiased
model performance estimates. First, we found that post hoc
counterbalancing leads to optimistic (i.e., positively biased)
model performance estimates, which is a result of removing
samples that are hard to classify or would be wrongly classi-
fied, during the subsampling process. Because this subsam-
pling process is applied to the entire dataset at once (i.e., it is
not cross-validated), it can be seen as a form of indirect circu-
lar analysis (Kriegeskorte et al., 2009), in which the data them-
selves are used to inform analysis decisions, which can lead to
biased generalization estimates. Second, our initial evaluation
of confound regression, which was applied on the entire dataset
(“WDCR”), yielded pessimistic (i.e., negatively biased) and even
significantly below chance model performance estimates. Ex-
tending previous research (Jamalabadi et al., 2016), we show that
this negative bias occurs when the “signal” in the data (opera-
tionalized as the width of the feature-target correlation distri-
bution) is lower than would be expected by chance, which we
link to the sampling distribution of the Pearson correlation co-
efficient. Importantly, we show that WDCR systematically nar-
rows the width of the correlation distribution — and thus leads
to lower model performance — which is exacerbated by both
higher correlations between target and confound, as well as by a
larger number of features.
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The negative bias observed in WDCR is caused by the
fact that it is performed on the whole dataset at once, lead-
ing to statistical dependencies between subsequent train and
test partitions. To overcome this negative bias, we propose to
cross-validate the confound regression procedure (which we call
“Cross-Validated Confound Regression”, CVCR). We show that
this method yields plausible model performance in the empiri-
cal analyses (i.e., significantly above chance model performance)
and nearly unbiased model performance in the simulations, for
different datasets varying in the amount of features (K) and the
strength of the confound (rCy). Moreover, initial supplementary
simulations suggest that these results generalize to (simulated)
fMRI data (Supplementary Figure B.1), seemingly demonstrat-
ing effective control of confounds across different degrees of
autocorrelation (Supplementary Figure B.2). The method may
show some negative bias in some scenarios due to the fact that,
in the train set, CVCR will remove all variance associated with
the confound (even variance spuriously correlated with the con-
found). However, this bias seems, at least in the simulated sce-
narios, very small. Overall, we believe that our results demon-
strate that CVCR is a flexible and effective method to control for
confounds in decoding analyses of neuroimaging data.

Relevance and consequences for previous and
future research
A priori and post hoc counterbalancing

We believe our results have implications not only for post hoc
counterbalancing, but a priori counterbalancing in observa-
tional designs in general. In both behavioral research (Wa-
cholder et al., 1992) and neuroimaging research (Görgen et al.,
2017), a priori counterbalancing (or case-control “matching”) is
a common strategy to avoid effects of confounds. However, as
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we show in the current study, this may unintentionally remove
samples that are harder to predict, especially when there is little
shared variance between the confound and the other predictors
(i.e., when there is low confound R2). Because, conceptually, this
represents a form of circular analysis, counterbalancing — re-
gardless of whether it is applied a priori or post hoc — can yield
biased model performance estimates. To some extent, the bias
in the post hoc counterbalancing results should not come as a
surprise: as noted in the Methods section, counterbalancing in
observational research requires the researcher to choose a sam-
ple that is not representative of the population (see also Sedg-
wick, 2013). As a result, out-of-sample predictive performance
drops significantly, in our case even to chance level.

Since post hoc counterbalancing does not show any positive
bias in model performance when there is no signal at all (i.e.,
signal R2), one could argue that any observed significant above
chance effect, while positively biased in terms of effect magni-
tude, can be interpreted as evidence that there must be signal
in the data in the first place. However, we argue against this
interpretation for two reasons. First, any above chance predic-
tive performance of models fitted after subsampling is not only
positively biased, but also does not cross-validate to the rejected
samples (see Figure 3.11). That is, the model picks up relations
between features and target that are only present in the subsam-
ple, and not in the samples left out of the analysis. As a result, it
is questionable whether (and if so, how) the model should be in-
terpreted — after all, we assume that the rejected samples were
drawn from the population of interest in a valid way. Second,
any possible absence of above chance model performance after
subsampling can neither be interpreted as evidence for an ab-
sence of a true effect, since the subsampling procedure necessar-
ily leads to a (often substantial) power loss. It could still well be
that in the original sample there was a true relation between fea-
tures and target. Thus, interpretation of modelling efforts after
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subsampling is problematic in case of both presence and absence
of above chance model performances.

Confound regression

In contrast to post hoc counterbalancing, confound regression
in its uncross-validated form (i.e., WDCR) has been applied
widely in the context of decoding analyses (Dubois et al., 2018;
Kostro et al., 2014; Rao et al., 2017; Todd et al., 2013). Indeed,
the first study that systematically investigated the effect of con-
founds in decoding analyses (Todd et al., 2013) used WDCR to
account for the confounding effect of reaction times (RT) on
decoding of rule representations and found that WDCR com-
pletely eliminated the predictive performance that was found
without controlling for RT. This observation, however, can po-
tentially be explained by the negative bias induced by WDCR.
This possible explanation is corroborated by a follow-up study
that similarly looked into RT confounding the decoding of rule
representations (Woolgar et al., 2014), who did not use WDCR
but accounted for RT confounding by including it as a covari-
ate during the pattern estimation procedure (see Supplementary
Materials for a tentative evaluation of this method), which in
contrast to the study by Todd et al. yielded significant decod-
ing performance. Moreover, while not specifically investigated
here, we expect a similar negative bias to occur when a confound
is removed from a continuous target variable using WDCR —
which may offer an explanation for the null finding of Dubois
et al. (2018), who fail to decode personality characteristics from
resting-state fMRI.

Relevance to other analysis methods

While this article focuses on controlling for confounds in de-
coding analyses specifically, we believe that our findings may be
relevant for analysis methods beyond decoding analyses as well.
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In fact, methods for controlling for confounds (or alternative
sources of information) have previously been investigated and
applied in another type of MVPA named “representational sim-
ilarity analysis” (RSA; Kriegeskorte et al., 2008). In the context
of RSA, the explained variance in the neural data is often par-
titioned into different (model-based) feature sets (i.e., sources
of information), which allows one to draw conclusions about
the unique influence of each source of information (see, e.g.,
Groen et al., 2018; Hebart et al., 2018; Ramakrishnan et al.,
2014). Specifically, variance partitioning in RSA is done by re-
moving the variance from the representational dissimilarity ma-
trix (RDM) based on the feature set that needs to be controlled
for. Notably, the variance of the RDMs that are not of inter-
est can be removed from only the neural RDM (Hebart et al.,
2018; Ramakrishnan et al., 2014) or both from the neural RDM
and the RDM of interest (Groen et al., 2018). While the anal-
ysis context is different, the underlying technique is identical
to confound regression as described and evaluated in this ar-
ticle. Importantly, the studies employing this variance parti-
tioning technique (Groen et al., 2018; Hebart et al., 2018; Ra-
makrishnan et al., 2014) similarly report plausible model per-
formances after confound regression (i.e., relatively lower but
not below chance performance), corroborating our results with
(cross-validated) confound regression. Note that the distinction
between WDCR and CVCR in the context of most RSA stud-
ies (including the aforementioned studies) is largely irrelevant,
as representational similarity analyses are not commonly cross-
validated. However, recently, some have proposed to use cross-
validated distance measures (such as the cross-validated Maha-
lanobis distance; Guggenmos et al., 2018; Walther et al., 2016)
in RSA, which could suffer from negative bias when combined
with (not cross-validated) variance partitioning similar to what
we observed with WDCR in the context of decoding analyses.

We believe that especially our findings with regard to WDCR
and CVCR may be relevant for any cross-validated analysis, re-
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gardless of the “direction” of analysis (encoding vs. decoding)
and the dimensionality of the neural data (univariate vs. mul-
tivariate approaches). In general, our findings with respect to
negative bias after WDCR were to be expected, as it introduces
dependence between the train set and the test set which violates
the crucial assumption of independence of any cross-validated
analysis. While a violation of the independence assumption of-
ten leads to positive bias such as in “double dipping” (Kriegesko-
rte et al., 2009), we show here that it may also lead to nega-
tive bias. Either way, our findings reinforce the idea that data
analysis operations should never be applied to the entire dataset
before subjecting the data to a cross-validated analysis. There-
fore, we believe that our findings with respect to WDCR and
CVCR will generalize to any cross-validated analysis (such as
cross-validated MANOVA, Allefeld & Haynes, 2014; or cross-
validated encoding models, Naselaris et al., 2011), but future re-
search is necessary to substantiate this claim.

Importance for gender decoding studies

The importance of proper confound control is moreover high-
lighted by the empirical question we address. Without any opti-
mization of the prediction pipeline, we were able to predict gen-
der with a model performance up to approximately 0.85 without
confound control. This is in line with reports from various other
studies (Del Giudice et al., 2016; Rosenblatt, 2016; Sepehrband
et al., 2018). However, this predictive performance is driven by
a mixture two sources of information: global and local differ-
ences in brain structure. With confound control, however, we
show that predictive performance using only local differences
lies around 0.6 for VBM data and 0.7 for TBSS data — a substan-
tial drop in performance. Especially because the remaining pre-
dictive performance is lower than predictive performance using
only brain size, we argue that the use of proper confound control
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may lead one to draw substantially different conclusions about
the differences in brain structure between men and women. For
the debate on gender dimorphism, it is thus extremely impor-
tant to take global brain size into account in the context of de-
coding analyses (as has been similarly recommended for mass-
univariate analyses; Barnes et al., 2010).

Choosing a confound model: linear vs. nonlinear
models
In the present paper, we focused on the use of linear models
for confound control. It is crucial to note that the efficacy of
confound control depends on the suitability of the confound re-
gression model employed. Removing variance associated with
a confound using a linear model removes only the variance of
data (features) that is linearly related to the confound. When a
confound is nonlinearly related to the data, some variance asso-
ciated with the confound can remain in the data after a linear
confound model is used to regress out variance. It is possible
that the decoding model subsequently applied still picks up this
residual “confounded” variance. In other words, an unsuitable
confound model may control for confounds imperfectly.

The exact relation between confound and (brain) data is
hardly ever known a priori. However, it is possible to explore
the nature of this relation using the data at hand. For exam-
ple, a researcher can apply a cross-validated prediction pipeline
to predict a feature (e.g., VBM voxel intensity) from the con-
found. The researcher can then test what type of model (linear
or nonlinear) describes the relation between confound and data
best. In the Supplementary Materials (section “Linear vs non-
linear confound models: predicting VBM and TBSS data based
on brain size”), we provide an example of this approach. We
used linear, quadratic, and cubic regression models to predict
VBM and TBSS voxel intensity using brain size as feature. In
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the Supplementary Results, we show that linear models perform
equally well as or better than polynomial models for the major-
ity of voxels (Supplementary Figures B.7 and B.9). Further, for
voxels where polynomials outperform linear models, the differ-
ence between model performances is minimal (Supplementary
Figure B.8). Thus, in the empirical research question explored in
this paper, a linear confound model seems to suit the data very
well.

Practical recommendations
As indicated by the title of this article, we will now outline some
practical recommendations for dealing with confounds in de-
coding analyses of neuroimaging data. First, one needs to ob-
tain an accurate measurement of potential confounds (Westfall
& Yarkoni, 2016). While we assumed the availability of such a
measure in this article, this is not always trivial. In experimental
settings, for example, reaction times can potentially be identi-
fied as a confound (Todd et al., 2013; Woolgar et al., 2014), but
arguably, it is not reaction time but rather an unobserved vari-
able related to reaction time (e.g., difficulty or attention) that
confounds the analysis. In such scenarios, the best one can do
is measure reaction time as a proxy, and be aware that any sub-
sequent confound control method is limited by how well this
proxy corresponds to the actual confound. Second, one needs
to identify which variables actually confound a decoding analy-
sis. To detect confounds, we recommend using the “same anal-
ysis approach” outlined by Görgen et al. (2017). In short, this
method involves trying to predict the target variable using your
confound(s) as predictive features (for example, when using only
brain size to predict gender). In case of significant above chance
decoding performance, and assuming the confounds are actually
encoded in the neuroimaging data, the hypothesized confounds
will most likely influence the actual decoding analysis. While in
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the current article we focused on simple univariate confounding
effects (i.e., confounding by a single variable), the same analysis
approach is not limited to detecting univariate confounds — it
facilitates detecting multivariate (i.e., confounding by multiple
variables) or interaction effects (i.e., confounding by interaction
effects between variables) as well. For example, if one hypothe-
sizes that the target variable is related to the interaction between
confound C1 and C2 (i.e., C1 × C2), one can simply use the in-
teraction term as the potential confound in the same analysis
approach to evaluate the potential confounding influence.

Once the specific confound terms have been identified, we
recommend regressing out the confound from the data in a
cross-validated manner (i.e., using CVCR). Specifically, we rec-
ommend including confound regression as the first step in your
decoding pipeline to avoid the effect of confounds on other op-
erations in the pipeline (such as univariate feature selection; Chu
et al., 2012). In this article, we used ordinary least squares (OLS)
regression to remove the influence of confounds from the data,
because a linear model describes the relation between brain size
and VBM/TBSS voxel intensities well (see Supplementary Fig-
ures B.7-B.9). However, not only linear models can be used to
remove variance associated with a confound from the data —
it is possible to use nonlinear models (potentially with multiple
confounds and interactions between them) if it is clear that the
relation between confounds and neuroimaging features is non-
linear (see previous section for details on choosing a confound
model). However, as a limitation to the presented results, we
did not test whether CVCR also leads to (nearly) unbiased re-
sults when used with nonlinear models. We advise, therefore,
in such cases, to first test in a simulation study whether CVCR
provides an unbiased confound control method with nonlinear
models before use with actual data.
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3.5 Conclusion
In general, we believe that the contributions of the current study
are twofold. First and foremost, it provides a systematic eval-
uation of widely applicable methods to control for confounds
and shows that, of the methods investigated, only one (“cross-
validated confound regression”) appears to yield plausible and
almost unbiased results. The results from this evaluation hope-
fully prevents researchers from using post hoc counterbalanc-
ing and whole-dataset confound regression, which we show
may introduce (unintended) biases. Moreover, we made all
analyses and preprocessed data openly available (https://github.
com/lukassnoek/MVCA) and provide a simple implementation
for cross-validated confound regression that interfaces with the
popular scikit-learn package in the Python programming lan-
guage. Second, we believe that this study improves understand-
ing of the elusive phenomenon of below chance accuracy (build-
ing on previous work by Jamalabadi et al., 2016). In general, we
hope that this study helps researchers in gaining more insight
into their decoding analyses by providing a method that disen-
tangles the contributions of different sources of information that
may be encoded in their data.
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Chapter 4

TheAmsterdam Open MRI
Collection, a set of multimodal

MRI datasets for individual
difference analyses

This chapter has been published as: Snoek, L., van der Miesen, M.M.,
Beemsterboer, T., van der Leij, A., Eigenhuis, A., & Scholte, H.S.
(2021). The Amsterdam Open MRI Collection, a set of multimodal
MRI datasets for individual difference analyses. Nature Scientific Data,
8, 85.
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Abstract We present the Amsterdam Open MRI Collec-
tion (AOMIC): three datasets with multimodal (3T) MRI data
including structural (T1-weighted), diffusion-weighted, and
(resting-state and task-based) functional BOLD MRI data, as
well as detailed demographics and psychometric variables from
a large set of healthy participants (N = 928, N = 226, and N =
216). Notably, task-based fMRI was collected during various ro-
bust paradigms (targeting naturalistic vision, emotion percep-
tion, working memory, face perception, cognitive conflict and
control, and response inhibition) for which extensively anno-
tated event-files are available. For each dataset and data modal-
ity, we provide the data in both raw and preprocessed form (both
compliant with the Brain Imaging Data Structure), which were
subjected to extensive (automated and manual) quality control.
All data is publicly available from the OpenNeuro data sharing
platform.
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4.1 Background & summary
It is becoming increasingly clear that robust effects in neu-
roimaging studies require very large sample sizes (Button et al.,
2013; Yarkoni, 2009), especially when investigating between-
subject effects (Dubois & Adolphs, 2016). With this in mind, we
have run several large-scale “population imaging” MRI projects
over the past decade at the University of Amsterdam, with the
aim to reliably estimate the (absence) of structural and func-
tional correlates of human behavior and mental processes. Af-
ter publishing several articles using these datasets (Elk & Snoek,
2020; Hoogeveen et al., 2020; Koolschijn et al., 2015; Ramakr-
ishnan et al., 2014; Snoek et al., 2019), we believe that mak-
ing the data from these projects publicly available will benefit
the neuroimaging community most. To this end, we present
the Amsterdam Open MRI Collection (AOMIC) — three large-
scale datasets with high-quality, multimodal 3T MRI data and
detailed demographic and psychometric data, which are pub-
licly available from the OpenNeuro data sharing platform. In
this article, we describe the characteristics and contents of these
three datasets in a manner that complies with the guidelines of
the COBIDAS MRI reporting framework (Nichols et al., 2017).

We believe that AOMIC represents a useful contribution to
the growing collection of publicly available population imaging
MRI datasets (Babayan et al., 2019; Mendes et al., 2019; Miller
et al., 2016; Van Essen et al., 2013). AOMIC contains a large
representative dataset of the general population, “ID1000” (N
= 928), and two large datasets with data from university stu-
dents, “PIOP1” (N = 216) and “PIOP2” (N = 226; Population
Imaging of Psychology). Each dataset contains MRI data from
multiple modalities (structural, diffusion, and functional MRI),
concurrently measured physiological (respiratory and cardiac)
data, and a variety of well-annotated demographics (age, sex,
handedness, educational level, etc.), psychometric measures (in-
telligence, personality), and behavioral information related to
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the task-based fMRI runs (see Figure 4.1 and Table 4.1 for an
overview). Furthermore, AOMIC offers, in addition to the raw
data, also preprocessed data from well-established preprocess-
ing and quality control pipelines, all consistently formatted ac-
cording to the Brain Imaging Data Structure (Gorgolewski et al.,
2016). As such, researchers can quickly and easily prototype and
implement novel secondary analyses without having to worry
about quality control and preprocessing themselves.

Due to the size and variety of the data in AOMIC, there
are many ways in which it can be used for secondary analysis.
One promising direction is to use the data for the development
of generative and discriminative machine learning-based algo-
rithms, which often need large datasets to train models on. An-
other, but related, use of AOMIC’s data is to use it as a validation
dataset (rather than train-set) for already developed (machine
learning) algorithms to assess the algorithm’s ability to general-
ize to different acquisition sites or protocols. Lastly, due to the
rich set of confound variables shipped with each dataset (includ-
ing physiology-derived noise regressors), AOMIC can be used to
develop, test, or validate (novel) denoising methods.
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Figure 4.1 General overview of AOMIC’s contents. Each dataset
(ID1000, PIOP1, PIOP2) contains multimodal MRI data, physiology (con-
current with fMRI acquisition), demographic and psychometric data, as well
as a large set of “derivatives”, i.e., data derived from the original “raw” data
through state-of-the-art preprocessing pipelines.



Table 4.1 Overview of the number of subjects per dataset and tasks.

ID1000 PIOP1 PIOP2

N subj. 928 216 226

T1w 928 216 226

DWI 925 211 226

Fieldmap n/a n/a 226

Mov RS Emo G-str FP WM Antic RS Emo WM Stop

fMRI 881 210 208 208 203 207 203 214 222 224 226

Physiology 790 198 194 194 189 194 188 216 216 211 217

Note: Mov: movie watching, RS: resting-state, Emo: emotion matching, G-str: gender-stroop, FP: face perception, WM:
working memory, Antic: anticipation, Stop: stop-signal. Tasks without this subscript were acquired without multiband ac-
celeration (i.e., ”sequential” acquisition).
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4.2 Methods
In this section, we describe the details of the data acquisition
for each dataset in AOMIC. We start with a common descrip-
tion of the MRI scanner used to collect the data. The next
two sections describe the participant characteristics, data col-
lection protocols, experimental paradigms (for functional MRI),
and previous analyses separately for the ID1000 study and the
PIOP studies. Then, two sections describe the recorded subject-
specific variables (such as educational level, background socio-
economic status, age, etc.) and psychometric measures from
questionnaires and tasks (such as intelligence and personality).
Finally, we describe how we standardized and preprocessed the
data, yielding an extensive set of “derivatives” (i.e., data derived
from the original raw data).

Scanner details and general scanning protocol (all
datasets)
Data from all three datasets were acquired on the same Philips
3T scanner (Philips, Best, the Netherlands), but underwent sev-
eral upgrades in between the three studies. The ID1000 dataset
was scanned on the “Intera” version, after which the scanner was
upgraded to the “Achieva” version (converting a part of the sig-
nal acquisition pathway from analog to digital) on which the
PIOP1 dataset was scanned. After finishing the PIOP1 study,
the scanner was upgraded to the “Achieva dStream” version
(with even earlier digitalization of the MR signal resulting in
less noise interference), on which the PIOP2 study was scanned.
All studies were scanned with a 32-channel head coil (though
the head coil was upgraded at the same time as the dStream
upgrade). Although not part of AOMIC, a separate dataset
(dStreamUpgrade) with raw and preprocessed data (DWI, T1-
weighted, and both resting-state and task-based functional MRI
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scans) acquired before and after the dStream upgrade using the
same sequences and participants in both sessions is available
on OpenNeuro (K Gorgolewski et al., 2017). In addition, un-
thresholded group-level temporal signal-to-noise ratio (tSNR)
maps and group-level GLM maps (for both the pre-upgrade and
post-upgrade data as well as the post-pre difference) are avail-
able on NeuroVault (Gorgolewski, Varoquaux, Rivera, Schwarz,
Ghosh, Maumet, Sochat, Nichols, Poldrack, Poline, Yarkoni, et
al., 2015).

At the start of each scan session, a low resolution survey
scan was made, which was used to determine the location of
the field-of-view. For all structural (T1-weighted), fieldmap
(phase-difference based B0 map), and diffusion (DWI) scans,
the slice stack was not angled. This was also the case for the
functional MRI scans of ID1000 and PIOP1, but for PIOP2 the
slice stack for functional MRI scans was angled such that the
eyes were excluded as much as possible in order to reduce sig-
nal dropout in orbitofrontal cortex. While the set of scans ac-
quired for each study is relatively consistent (i.e., at least one T1-
weighted anatomical scan, at least one diffusion-weighted scan,
and at least one functional BOLD MRI scan), the parameters for
a given scan vary slightly between the three studies. Notably, the
functional MRI data from the resting-state and faces tasks from
PIOP1 were acquired with multi-slice acceleration (factor 3; re-
ferred to in the current article as “multiband” acquisition), while
all other functional MRI scans, including those from ID1000
and PIOP2, were acquired without multi-slice acceleration (re-
ferred to in the current article as “sequential” acquisition). The
reason for reverting to sequential (instead of multiband) acqui-
sition of the resting state scan in PIOP2 is that we did not think
the reduction in tSNR observed in multiband scans outweighs
the increase in number of volumes. In Supplementary Tables
C.1-C.4, the parameters for the different types of scans across
all three studies are listed.
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During functional MRI scans, additional physiological data
was recorded. Respiratory traces were recorded using a respi-
ratory belt (air filled cushion) bound on top of the subject’s di-
aphragm using a velcro band. Cardiac traces were recorded us-
ing a plethysmograph attached to the subject’s left ring finger.
Data was transferred to the scanner PC as plain-text files (Philips
“SCANPHYSLOG” files) using a wireless recorder with a sam-
pling frequency of 496 Hz.

Experimental paradigms for the functional MRI runs were
shown on a 61 × 36 cm screen using a DLP projector with
a 60 Hz refresh rate (ID1000 and PIOP1) or on a Cambridge
Electronics BOLDscreen 32 IPS LCD screen with a 120 Hz re-
fresh rate (PIOP2), both placed at 113 cm distance from the
mirror mounted on top of the head coil. Sound was presented
via a MRConfon sound system. Experimental tasks were pro-
grammed using Neurobs Presentation (Neurobehavioral Sys-
tems Inc, Berkeley, U.S.A.) and run on a Windows computer
with a dedicated graphics card. To allow subject responses in
experimental tasks (PIOP1 and PIOP2 only), participants used
MRI-compatible fibre optic response pads with four buttons
for each hand (Cambridge Research Systems, Rochester, United
Kingdom).

ID1000 specifics
In this section, we describe the subject recruitment, sub-
ject characteristics, data collection protocol, functional MRI
paradigm, and previous analyses of the ID1000 study.

Subjects

The data from the ID1000 sample was collected between 2010
and 2012. The faculty’s ethical committee approved this study
before data collection started (EC number: 2010-BC-1345). Po-
tential subjects were a priori excluded from participation if they
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did not pass a safety checklist with MRI contraindications. We
recorded data from 992 subjects of which 928 are included in
the dataset (see Technical validation for details on the post-hoc
exclusion procedure). Subjects were recruited through a recruit-
ment agency (Motivaction International B.V.) in an effort to get a
sample that was representative of the general Dutch population
in terms of educational level (as defined by the Dutch govern-
ment, Onderwijsindeling, 2016), but drawn from only a limited
age range (19 to 26). We chose this limited age range to mini-
mize the effect of aging on any brain-related covariates. A more
detailed description of educational level and other demographic
variables can be found in the section “Subject variables”.

Data collection protocol

Prior to the experiment, subjects were informed about the goal
and scope of the research, the MRI procedure, safety measures,
general experimental procedures, privacy and data sharing con-
cerns, and voluntary nature of the project (i.e., subjects were told
that they could stop with the experiment at any time, without
giving a reason for it). Before coming to the scan center, sub-
jects also completed a questionnaire on background information
(to determine educational level, which was used to draw a rep-
resentative sample). If participants were invited they provided
informed consent and completed an MRI screening checklist.
Subjects then completed an extensive set of questionnaires and
tests, including a general demographics questionnaire, the In-
telligence Structure Test (Amthauer et al., 2001; Vorst, 2010),
the “trait” part of the State-Trait Anxiety Inventory (STAI; Spiel-
berger et al., 1970), a behavioral avoidance/inhibition question-
naire (BIS/BAS; Carver & White, 1994; Franken et al., 2005),
multiple personality questionnaires — amongst them the MPQ
(Eigenhuis et al., 2013) and the NEO-FFI (Hoekstra et al., 1996;
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Van der Ploeg, 1980) and several behavioral tasks. The psycho-
metric variables of the tests included in the current dataset are
described in the section “Psychometric variables”.

Testing took place from 9 AM until 4 PM and on each day
two subjects were tested. One subject began with the IST in-
telligence test, while the other subject started with the imaging
part of the experiment. For the MRI part, we recorded three T1-
weighted scans, three diffusion-weighted scans, and one func-
tional (BOLD) MRI scan (in that order). The scanning ses-
sion lasted approximately 60 minutes. Afterwards, the subjects
switched and completed the other part. After these initial tasks,
the subjects participated in additional experimental tasks, some
of which have been reported in other publications (Gazendam et
al., 2015; Pinto et al., 2013) and are not included in this dataset.

Functional MRI paradigm

During functional MRI acquisition, subjects viewed a movie clip
consisting of a (continuous) compilation of 22 natural scenes
taken from the movie Koyaanisqatsi (Reggio, 1982) with mu-
sic composed by Philip Glass. The scenes were selected because
they broadly sample a set of visual parameters (textures and ob-
jects with different sizes and different rates of movement). Im-
portantly, the focus on variation of visual parameters means, in
this case, that the movie lacks a narrative and thus may be inap-
propriate to investigate semantic or other high-level processes.

The scenes varied in length from approximately 5 to
40 seconds with “cross dissolve” transitions between scenes.
The movie clip extended 16 degrees visual angle (resolu-
tion 720 × 576, movie frame rate of 25 Hz). The onset
of the movie clip was triggered by the first volume of the
fMRI acquisition and had a duration of 11 minutes (which
is slightly longer than the fMRI scan, i.e., 10 minutes and
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38 seconds). The movie clip is available in the “stim-
uli” subdirectory of the ID1000 dataset (with the filename
task-moviewatching_desc-koyaanisqatsi_movie.mp4).

Previous analyses

The MRI data of ID1000 has been analyzed previously by two
studies. One study (Ramakrishnan et al., 2014) analyzed the
functional MRI data of a subset of 20 subjects by relating fea-
tures from computational models applied to the movie data to
the voxelwise time series using representational similarity anal-
ysis. Another study (Koolschijn et al., 2015) analyzed the rela-
tionship between autistic traits and voxel-based morphometry
(VBM, derived from the T1-weighted scans) as well as fractional
anisotropy (FA, derived from the DWI scans) in a subset of 508
subjects.

PIOP1 and PIOP2 specifics
In this section, we describe the subject recruitment, sub-
ject characteristics, data collection protocol, functional MRI
paradigm, and previous analyses of the PIOP1 and PIOP2 stud-
ies. These two studies are described in a common section be-
cause their data collection protocols were very similar. Infor-
mation provided in this section (including sample characteris-
tics, sample procedure, data acquisition procedure and scan se-
quences) can be assumed to apply to both PIOP1 and PIOP2,
unless explicitly stated otherwise. As such, these datasets can be
used as train/test (or validation) partitions. The last subsection
(“Differences between PIOP1 and PIOP2”) describes the main
differences between the two PIOP datasets.

Subjects

Data from the PIOP1 dataset were collected between May 2015
and April 2016 and data from the PIOP2 dataset between March
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2017 and July 2017. The faculty’s ethical committee approved
these studies before data collection started (PIOP1 EC number:
2015-EXT-4366, PIOP2 EC number: 2017-EXT-7568). Poten-
tial subjects were a priori excluded from participation if they did
not pass a safety checklist with MRI contraindications. Data was
recorded from 248 subjects (PIOP1) and 242 subjects (PIOP2),
of which 216 (PIOP1) and 226 (PIOP2) are included in AOMIC
(see Technical validation for details on the post-hoc exclusion
procedure). Subjects from both PIOP1 and PIOP2 were all uni-
versity students (from the Amsterdam University of Applied
Sciences or the University of Amsterdam) recruited through
the University websites, posters placed around the university
grounds, and Facebook. A description of demographic and
other subject-specific variables can be found in the section “Sub-
ject variables”.

Data collection protocol

Prior to the research, subjects were informed about the goal of
the study, the MRI procedure and safety, general experimen-
tal procedure, privacy and data sharing issues, and the volun-
tary nature of participation through an information letter. Each
testing day (which took place from 8.30 AM until 1 PM), four
subjects were tested. First, all subjects filled in an informed con-
sent form and completed an MRI screening checklist. Then, two
subjects started with the MRI part of the experiment, while the
other two completed the demographic and psychometric ques-
tionnaires (described below) as well as several tasks that are not
included in AOMIC.

The MRI session included a survey scan, followed by a T1-
weighted anatomical scan. Then, several functional MRI runs
(described below) and a single diffusion-weighted scan were
recorded. Details about the scan parameters can be found in
Supplementary Tables C.1-C.4. The scan session lasted approxi-
mately 60 minutes. The scans were always recorded in the same
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order. For PIOP1, this was the following: faces (fMRI), gender-
stroop (fMRI), T1-weighted scan, emotion matching (fMRI),
resting-state (fMRI), phase-difference fieldmap (B0) scan, DWI
scan, working memory (fMRI), emotion anticipation (fMRI). For
PIOP2, this was the following: T1-weighted scan, working mem-
ory (fMRI), resting-state (fMRI), DWI scan, stop signal (fMRI),
emotion matching (fMRI).

Functional MRI paradigms

In this section, we will describe the experimental paradigms
used during fMRI acquisition. See Figure 4.2 for a visual rep-
resentation of each paradigm. None of the designs were opti-
mized for efficiency, except for the emotion anticipation task
(which was optimized for efficiency to estimate the effect of each
condition). All paradigms during functional MRI were started
and synced to the functional MRI acquisition using a transistor-
transistor logic (TTL) pulse sent to the stimulus presentation
computer.

Emotion matching (PIOP1+2). The goal of the “emotion
matching” task is to measure processes related to (facial) emo-
tion processing. The paradigm we used was based on Hariri et
al. (2000). Trials were presented using a blocked design. In each
trial, subjects were presented with either color images of an emo-
tional target face (top) and two emotional probe faces (bottom
left and bottom right; “emotion” condition) or a target oval (top)
and two probe ovals (bottom left and bottom right; “control”
condition) on top of a gray background (RGB: 248, 248, 248)
and were instructed to either match the emotional expression of
the target face (“emotion” condition) or the orientation or the
target oval (“control” condition) as quickly as possible by push-
ing a button with the index finger of their left or right hand. The
target and probes disappeared when the subject responded (or
after 4.8 seconds). A new trial always appeared 5 seconds after
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Figure 4.2 A visual representation of all experimental paradigms during
task-based fMRI. ISI: inter-stimulus interval.

the onset of each trial. In between the subject’s response and
the new trial, a blank screen was shown. Trials were presented
in alternating “control” and “emotion” blocks consisting of six
stimuli of 5 seconds each (four blocks each, i.e., 48 stimuli in to-
tal). Stimuli always belonged to the same block, but the order of
stimuli within blocks was randomized across participants. The
task took 270 seconds in total (i.e., 135 volumes with a 2 second
TR).

The faces always displayed either stereotypical anger or fear.
Within trials, always exactly two faces portrayed the same ex-
pression. Both male and female faces and white, black, and
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Asian faces were used, but within a single trial, faces were always
of the same sex and ethnicity category (white or Asian/black).
Face pictures were derived from the NimStim Face Stimulus set
(Tottenham et al., 2009). The oval stimuli were created by pixe-
lating the face stimuli and were approximately the same area as
the face stimuli (making them color and size matched to the face
stimuli) and were either presented horizontally (i.e., the long
side was horizontally aligned) or vertically (i.e., the long side was
vertically aligned). Within trials, always exactly two ovals were
aligned in the same way.

The fMRI “event files” (with the identifier *_events*) asso-
ciated with this task contain information of the trial onset (the
moment the faces/ovals appeared on screen, in seconds), dura-
tion (how long the faces/ovals were presented, in seconds), trial
type (either “control” or “emotion”), response time (how long
it took the subject to respond, logged “n/a” in case of no re-
sponse), response hand (either “left”, “right”, or “n/a” in case of
no response), response accuracy (either “correct”, “incorrect”, or
“miss”), orientation to match (either “horizontal”, “vertical”, or
“n/a” in case of emotion trials), emotion match (either “fear”,
“anger”, or “n/a” in case of control trials), gender of the faces (ei-
ther “male”, “female”, of “n/a” in case of control trials), and eth-
nicity of the target and probe faces (either “caucasian”, “asian”,
“black”, or “n/a” in case of control trials).

Workingmemory task (PIOP1+2). The goal of the working
memory task was to measure processes related to visual work-
ing memory. The paradigm we used was based on Pessoa et
al. (2002). Trials were presented using a fixed event-related
design, in which trial order the same for each subject. Trials
belonged to one of three conditions: “active (change)”, “active
(no change)”, or “passive”. Each trial consisted of six phases: an
alert phase (1 second), an encoding phase (1 second), a retention
phase (2 seconds), a test phase (1 second), a response phase (1
second), and an inter-stimulus interval (0-4 seconds). Subjects
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were instructed to keep focusing on the fixation target, which
was shown throughout the entire trial, and completed a set of
practice trials before the start of the actual task. The task took
324 seconds in total (i.e., 162 volumes with a 2 second TR).

In all trial types, trials started with an alert phase: a change
of color of the fixation sign (a white plus sign changing to green,
RGB [0, 255, 0]), lasting for 1 second. In the encoding phase, for
“active” trials, an array of six white bars with a size of 2 degrees
visual angle with a random orientation (either 0, 45, 90, or 135
degrees) arranged in a circle was presented for 1 second. This
phase of the trial coincided with a change in background lumi-
nance from black (RGB: [0, 0, 0]) to gray (RGB: [120, 120, 120]).
For “passive” trials, only the background luminance changed
(but no bars appeared) in the encoding phase. In the subsequent
retention phase, for all trial types, a fixation cross was shown
and the background changed back to black, lasting 2 seconds.
In the test phase, one single randomly chosen bar appeared (at
one of the six locations from the encoding phase) which either
matched the original orientation (for “active (no change)” trials)
or did not match the original orientation (for “active (change)”
trials), lasting for 1 second on a gray background. For “passive”
trials, the background luminance changed and, instead of a bar,
the cue “respond left” or “respond right” was shown in the test
phase. In the response phase, lasting 1 second, the background
changed back to black and, for “active” trials, subjects had to re-
spond whether the array changed (button press with right index
finger) or did not change (button press with left index finger).
For “passive” trials, subjects had to respond with the hand that
was cued in the test phase. In the inter-stimulus interval (which
varied from 0 to 4 seconds), only a black background with a fix-
ation sign was shown.

In total, there were 8 “passive” trials, 16 “active (change)”
and “active (no change)” trials, in addition to 20 “null” trials of
6 seconds (which are equivalent to an additional inter-stimulus
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interval of 6 seconds). The sequence trials was, in terms of con-
ditions (active, passive, null) exactly the same for all participa-
tions in both PIOP1 and PIOP2, but which bar or cue was shown
in the test phase was chosen randomly.

The fMRI event files associated with this task contain in-
formation of the trial onset (the moment when the alert phase
started, in seconds), duration (from the alert phase up to and in-
cluding the response phase, i.e., always 6 seconds), trial type (ei-
ther “active (change)”, “active (no change)”, or “passive”; “null”
trials were not logged), response time (how long it took the sub-
ject to respond, “n/a” in case of no response), response hand (ei-
ther “left”, “right”, or “n/a” in case of no response), and response
accuracy (either “correct”, “incorrect”, or “miss”). Note that, in
order to model the response to one or more phases of the trial,
the onsets and durations should be adjusted accordingly (e.g., to
model the response to the retention phase, add 2 seconds to all
onsets and change the duration to 2 seconds).

Resting state (PIOP1+2). During the resting state scans,
participants were instructed to keep their gaze fixated on a fix-
ation cross in the middle of the screen with a gray background
(RGB: [150, 150, 150]) and to let their thoughts run freely. Eye-
tracking data was recorded during this scan but is not included
in this dataset. The resting state scans lasted 6 minutes (PIOP1;
i.e., 480 volumes with a 0.75 second TR) and 8 minutes (PIOP2;
i.e., 240 volumes with a 2 second TR).

Face perception (PIOP1). The face perception task was in-
cluded to measure processes related to (emotional) facial expres-
sion perception. Trials were presented using an event-related
design, in which trial order was randomized per subject. In each
trial, subjects passively viewed dynamic facial expressions (i.e.,
short video clips) taken from the Amsterdam Facial Expression
Set (ADFES; Schalk et al., 2011), which displayed either anger,
contempt, joy, or pride, or no expression (“neutral”). Each clip
depicted a facial movement from rest to a full expression corre-
sponding to one of the four emotions, except for “neutral” faces,
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which depicted no facial movement. All clips lasted 2 seconds
and contained either North-European or Mediterranean mod-
els, all of whom were female. After each video, a fixed inter-
stimulus interval of 5 seconds followed. Each emotional fa-
cial expression (including “neutral”) was shown 6 times (with
different people showing the expression each time), except for
one, which was shown 9 times. Which emotional expression (or
“neutral”) was shown an extra three times was determined ran-
domly for each subject. Importantly, the three extra presenta-
tions always contained the same actor and were always presented
as the first three trials. This was done in order to make it possible
to evaluate the possible effects of stimulus repetition. The task
took 247.5 seconds in total (i.e., 330 volumes with a 0.75 second
TR).

The fMRI event files associated with this task contain infor-
mation of the trial onset (the moment when the clip appeared
on screen, in seconds), duration (of the clip, i.e., always 2 sec-
onds), trial type (either “anger”, “joy”, “contempt”, “pride”, or
“neutral”), sex of the model (all “female”), ethnicity of the model
(either “North-European” or “Mediterranean”), and the ADFES
ID of the model.

Gender-stroop task (PIOP1 only). The goal of the gender-
stroop task was to measure processes related to cognitive conflict
and control (Milham et al., 2003; see also Hoogeveen et al., 2020
for an investigation of these processes using the PIOP1 gender-
stroop data). We used the face-gender variant of the Stroop task
(which was adapted from Egner et al., 2010), often referred to
as the “gender-stroop” task. In this task, pictures of twelve dif-
ferent male and twelve different female faces are paired with the
corresponding (i.e., congruent) or opposite (i.e., incongruent)
label. For the labels, we used the Dutch words for “man”, “sir”,
“woman”, and “lady” using either lower or upper case letters.
The labels were located just above the head of the face. Trials
were presented using an event-related design, in which trial or-
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der was randomized per subject. The task took 490 seconds in
total (i.e., 245 volumes with a 2 second TR).

On each trial, subjects were shown a face-label composite on
top of a gray background (RGB: [105, 105, 105]) for 0.5 seconds,
which was either “congruent” (same face and label gender) or
“incongruent” (different face and label gender). Stimulus pre-
sentation was followed by an inter-stimulus interval ranging be-
tween 4 and 6 seconds (in steps of 0.5 seconds). Subjects were
always instructed to respond to the gender of the pictured face,
ignoring the distractor word, as fast as possible using their left
index finger (for male faces) or right index finger (for female
faces). There were 48 stimuli for each condition (“congruent”
and “incongruent”).

The fMRI event files associated with this task contain infor-
mation of the trial onset (the moment when the face-label com-
posite appeared on screen, in seconds), duration (of the face-
label composite, i.e., always 0.5 seconds), trial type (either “in-
congruent” or “congruent”), gender of the face (either “male or
“female”), gender of the word (either “male” or “female”), re-
sponse time (in seconds), response hand (either “left”, “right”, or
“n/a” in case of no response), response accuracy (either “correct”,
“incorrect”, or “miss”).

Emotion anticipation task (PIOP1 only). We included
the emotion anticipation task to measure processes related to
(emotional) anticipation and curiosity. The paradigm was based
on paradigms previously used to investigate (morbid) curiosity
(Oosterwijk, 2017a; Oosterwijk et al., 2020). Trials were pre-
sented using an event-related design, in which trial order was
randomized per subject. In this task, subjects viewed a series of
trials containing a cue and an image. The cue could either signal
an 80% chance of being followed by a negatively valenced image
(and a 20% chance of a neutral image) or an 80% chance of being
followed by a neutral image (and a 20% change of a negatively va-
lenced image). The cue was shown on top of a black background
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for 2 seconds, followed by a fixed interval of 3 seconds. After
this interval, either a negative or neutral image was shown for
3 seconds, with a frequency that corresponds to the previously
shown cue. In other words, for all trials with, for example, a cue
signalling an 80% chance of being followed by a neutral image, it
was in fact followed by a neutral image in 80% of the times. Af-
ter the image, a fixed inter-stimulus interval of five seconds fol-
lowed. In total, 15 unique negative images and 15 unique neutral
images were shown, of which 80% (i.e., 12 trials) was preceded
by a “valid” cue. Which stimuli were paired with valid or in-
valid cues was determined randomly for each subject. The or-
der of the trials, given the four possible combinations (valid cue
+ negative image, invalid cue + negative image, valid cue + neu-
tral image, invalid cue + neutral image), was drawn randomly
from one of four possible sequences, which were generated using
OptSeq (https://surfer.nmr.mgh.harvard.edu/optseq/) to opti-
mize the chance of finding a significant interaction between cue
type and image valence. The task took 400 seconds in total (i.e.,
200 volumes with a 2 second TR).

The cue was implemented as a pie chart with the probability
of a neutral image in blue and the probability of the negative im-
age in red with the corresponding labels and probabilities (e.g.,
“negative 20%”) superimposed for clarity. The images were se-
lected from the IAPS database37 and contained images of mu-
tilation, violence, and death (negative condition) and of people
in neutral situations (neutral condition).

The fMRI event files associated with this task contain infor-
mation on the trial onset (the moment when either the cue or
image appeared on the screen, in seconds), duration (of either
the cue or image), and trial type. Trial type was logged separately
for the cues (“negative”, indicating 80% probability of a negative
image, and “neutral”, indicating 80% probability of a neutral im-
age) and images (“negative” or “neutral”).

Stop-signal task (PIOP2 only). The stop-signal task was in-
cluded to measure processes related to response inhibition. This
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specific implementation of the stop-signal paradigm was based
on Jahfari et al. (2015). Trials were presented using an event-
related design, in which trial order was randomized per subject.
Subjects were presented with trials (n = 100) in which an image
of either a female or male face (chosen from 9 exemplars) was
shown for 500 ms on a black background. Subjects had to re-
spond whether the face was female (right index finger) or male
(left index finger) as quickly and accurately as possible, except
when an auditory stop signal (a tone at 450 Hz for 0.5 seconds)
was presented (on average 33% of the trials). The delay in pre-
sentation of the stop signal (i.e., the “stop signal delay”) was at
start of the experiment 250 milliseconds, but was shortened with
50 ms if stop performance, up to that point, was better than 50%
accuracy and shortened with 50 ms if it was worse. Each trial
had a duration of 4000 ms and was preceded by a jitter inter-
val (0, 500, 1000 or 1500 ms). If subjects responded too slow,
or failed to respond an additional feedback trial of 2000 ms was
presented. Additionally 10% (on average) null trials with a du-
ration of 4000 ms were presented randomly. Note that due to
this additional feedback trial and the fact that subjects differed
in how many feedback trials they received, the fMRI runs asso-
ciated with this task differ in length across subjects (i.e., the scan
was manually stopped after 100 trials; minimum: 210 volumes,
maximum: 250 volumes, median: 224 volumes, corresponding
to a duration of 448 seconds with a 2 second TR).

The fMRI event files associated with this task contain infor-
mation on the trial onset (the moment when a face was pre-
sented, in seconds), duration (always 0.5083 seconds), trial type
(go, succesful_stop, unsuccesful_stop), if and when a stop sig-
nal was given (in seconds after stimulus onset), if and when a
response time was given (in seconds after stimulus onset), re-
sponse of the subject (left, right), and the sex of the image (male,
female).
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Previous analyses

The PIOP1 data has been previously analyzed by three stud-
ies. One methodological study (Snoek et al., 2019) used the T1-
weighted data (VBM, specifically) and DWI data (tract-based
spatial statistics, TBSS, specifically) and the self-reported bio-
logical sex of subjects to empirically test an approach to correct
for confounds in decoding analyses of neuroimaging data. Two
other studies analyzed the participants’ religiosity scores. One
study (Elk & Snoek, 2020) performed a voxelwise VBM analysis
on the religiosity scores while the other study (Hoogeveen et al.,
2020) related the religiosity data to the incongruent - congruent
activity differences from the gender-stroop functional MRI data.
Notably, both studies were pre-registered. There have been no
(published) analyses on the PIOP2 data.

Differences between PIOP1 and PIOP2

One important difference between PIOP1 and PIOP2 is that
they are not the same in terms of task-based functional MRI
they acquired. Specifically, the “emotion anticipation”, “faces”,
and “gender stroop” tasks were only acquired in PIOP1 and the
“stop signal” task was only acquired in PIOP2 (see Table 4.1).
In terms of scan sequences, the only notable difference between
PIOP1 and PIOP2 is that the resting-state functional MRI scan
in PIOP1 was acquired with multiband factor 3 (resulting in a TR
of 750 ms) while the resting-state functional MRI scan in PIOP2
was acquired without multiband (i.e., with a sequential acqui-
sition, resulting in a TR of 2000 ms; see Supplementary Tables
C.1-C.4). Additionally, because PIOP1 was acquired before the
dStream upgrade and PIOP2 after the upgrade, the PIOP1 data
generally has a lower tSNR but this does not seem to lead to sub-
stantial differences in effects (see Technical Validation).

129



4.2. Methods

Table 4.2Descriptive statistics for biological sex, age, and education level
for all three datasets.

% by biological
sex

Mean age (sd;
range)

% per education
level / category

ID1000 M: 47%, F: 52% 22.85 (1.71; 19-26) Low: 10%,
Medium: 43%,
High: 43%

PIOP1 M: 41.2%, F:
55.6%

22.18 (1.80;
18.25-26.25)

Applied: 56.5%,
Academic: 43.5%

PIOP2 M: 42.5%, F:
57.0%

21.96 (1.79;
18.25-25.75)

Applied: 53%,
Academic: 46%

Subject variables (all datasets)
In AOMIC, several demographic and other subject-specific vari-
ables are included per dataset. Below, we describe all variables in
turn. Importantly, all subject variables and psychometric vari-
ables are stored in the participants.tsv file in each study’s data
repository. Note that missing data in this file is coded as “n/a”.
In Supplementary Table C.5, all variables and associated descrip-
tions are listed for convenience.

Age

We asked subjects for their date of birth at the time they partic-
ipated. From this, we computed their age rounded to the near-
est quartile (for privacy reasons). See Table 4.2 for descriptive
statistics of this variable.

Biological sex and gender identity

In all three studies, we asked subjects for their biological sex (of
which the options were either male or female). For the ID1000
dataset, after the first 400 subjects, we additionally asked to what
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degree subjects felt male and to what degree they felt female (i.e.,
gender identity; separate questions, 7 point likert scale, 1 = not at
all, 7 = strong). The exact question in Dutch was: “ik voel mij een
man”, “ik voel mij een vrouw”. This resulted in 0.3% of subjects
scoring opposite on gender identity compared to their biological
sex and 92% of females and 90% of males scoring conformable
with their sex.

Sexual orientation

For the ID1000 dataset, after the first 400 subjects, we addition-
ally asked to what degree subjects were attracted to men and
women (both on a 7 point likert scale, 1 = not at all, 7 = strong).
The exact question in Dutch was: “ik val op mannen” and “ik val
op vrouwen”. Of the 278 subjects with a male sex 7.6% indicated
to be attracted to men (score of 4 or higher), of the 276 subjects
with a female sex 7.2% indicated to be attracted to women (score
of 4 or higher). Of the 554 subjects who completed these ques-
tions 0.4% indicated not be attracted to either men or women
and 0.9% indicated to be strongly attracted to both men and
women.

BMI

Subjects were asked for (PIOP1 and PIOP2) or we measured
(ID1000) subjects’ height and weight on the day of testing, from
which we calculated their body-mass-index (BMI), which we
rounded to the nearest integer. Note that height and weight are
not included in AOMIC (for privacy reasons), but BMI is.

Handedness

Subjects were asked for their dominant hand. In ID1000, the
options were “left” and “right” (left: 102, right: 826). For PIOP1
and PIOP2 we also included the option “both” (PIOP1, left: 24,
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right: 180, ambidextrous: 5, n/a: 7; PIOP2, left: 22, right: 201,
ambidextrous: 1, n/a: 2).

Educational level / category

Information about subjects’ educational background is recorded
differently for ID1000 and the PIOP datasets, so they are dis-
cussed separately. Importantly, while we included data on ed-
ucational level for the ID1000 dataset, we only include data on
educational category for the PIOP datasets because they contain
little variance in terms of educational level.

Educational level (ID1000). As mentioned, for the ID1000
dataset we selected subjects based on their educational level in
order to achieve a representative sample of the Dutch popula-
tion (on that variable). We did this by asking for their highest
completed educational level. In AOMIC, however, we report
the educational level (three point scale: low, medium, high) on
the basis of the completed or current level of education (which
included the scenario in which the subject was still a student),
which we believe reflects educational level for our relatively
young (19-26 year old) better. Note that this difference in crite-
rion causes a substantial skew towards a higher educational level
in our sample relative to the distribution of educational level in
the Dutch population (see Table 4.3).

Table 4.3 Distribution of educational level in the Dutch population (in
2010) and in ID1000.

Educational
level

Population Subjects Father Mother

Low 35% 10% 36% 32%

Medium 39% 43% 27% 24%

High 26% 47% 37% 44%
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Table 4.4 Distribution of background SES.

Background SES % of subjects

3-Feb 16%

4-Mar 26%

5-Apr 28%

6-May 19%

>6 11%

Note: The data from the education level of subjects’ parents was used
to compute background socio-economic status.

Educational category (PIOP1+2). Relative to ID1000,
there is much less variance in educational level within the PIOP
datasets as these datasets only contain data from university stu-
dents. As such, we only report whether subjects were, at the time
of testing, studying at the Amsterdam University of Applied Sci-
ences (category: “applied”) or at the University of Amsterdam
(category: “academic”).

Background socio-economic status (SES). In addition to
reporting their own educational level, subjects also reported the
educational level (see Table 4.3) of their parents and the fam-
ily income in their primary household. Based on this informa-
tion, we determined subjects’ background social economical sta-
tus (SES) by adding the household income — defined on a three
point scale (below modal income, 25%: 1, between modal and 2
× modal income, 57%: 2, above 2 × modal income, 18%: 3) —
with the average educational level of the parents — defined on a
three point scale (low: 1, medium: 2, high: 3). This revealed that,
while the educational level of the subjects is somewhat skewed
towards “high”, SES is well distributed across the entire spectrum
(see Table 4.4).
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Religion (PIOP1 and ID1000 only)

For both the PIOP1 and ID1000 datasets, we asked subjects
whether they considered themselves religious, which we include
as a variable for these datasets (recoded into the levels “yes”
and “no”). Of the subjects that participated in the PIOP1 study
18.0% indicated to be religious, for the subjects in the ID1000
projects this was 21.2%. For the ID1000 dataset we also asked
subjects if they were raised religiously (N = 928, 34.1%) and to
what degree religion played a daily role in their lives (in Dutch,
“Ik ben dagelijks met mijn geloof bezig”, 5 point likert scale, 1 =
not at all applicable, 5 = very applicable).

Psychometric variables (all datasets)
BIS/BAS (ID1000 only). The BIS/BAS scales are based on the
idea that there are two general motivational systems underlying
behavior and affect: a behavioral activation system (BAS) and
a behavioral inhibition system (BIS). The scales of the BIS/BAS
attempt to measure these systems (Carver & White, 1994). The
BAS is believed to measure a system that generates positive feed-
back while the BIS is activated by conditioned stimuli associated
with punishment.

The BIS/BAS questionnaire consists of 20 items (4 point
scale). The BIS scale consists of 7 items. The BAS scale con-
sists of 13 items and contains three subscales, related to impul-
sivity (BAS-Fun, 4 items), reward responsiveness (BAS-Reward,
5 items) and the pursuit of rewarding goals (BAS-Drive, 4 items).

STAI-T (ID1000). We used the STAI (Spielberger et al.,
1970; Van der Ploeg, 1980) to measure trait anxiety (STAI-T).
The questionnaire consists of two scales (20 questions each) that
aim to measure the degree to which anxiety and fear are a trait
and part of the current state of the subject; subjects only com-
pleted the trait part of the questionnaire, which we include in
the ID1000 dataset.
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NEO-FFI (all datasets). The NEO-FFI is a Big 5 personal-
ity questionnaire that consists of 60 items (12 per scale; Hoek-
stra et al., 1996; McCrae & Costa, 1987). It measures neuroti-
cism (“NEO-N”), extraversion (“NEO-E”), openness to experi-
ence (“NEO-O”), agreeableness (“NEO-A”), and conscientious-
ness (“NEO-C”). Neuroticism is the opposite of emotional sta-
bility, central to this construct is nervousness and negative emo-
tionality. Extraversion is the opposite of introversion, central to
this construct is sociability — the enjoyment of others’ company.
Openness to experience is defined by having original, broad in-
terests, and being open to ideas and values. Agreeableness is the
opposite of antagonism. Central to this construct are trust, co-
operation and dominance. Conscientiousness is the opposite of
un-directedness. Adjectives associated with this construct are
thorough, hard-working and energetic.

IST (ID1000 only). The Intelligence Structure Test (IST;
Vorst, 2010; Amthauer et al., 2001) is an intelligence test mea-
suring crystallized intelligence, fluid intelligence, and memory,
through tests using verbal, numerical, and figural information.
The test consists of 590 items. The three measures (crystallized
intelligence, fluid intelligence, and memory) are strongly posi-
tively correlated (between r = .58 and r = .68) and the sum
score of these values form the variable “total intelligence”.

Raven’s matrices (PIOP only). As a proxy for intelligence,
subjects performed the 36 item version (set II) of the Raven’s
Advanced Progressive Matrices Test (Raven et al., 1998; Raven,
2000). We included the sum-score (with a maximum score of
36) in the PIOP datasets.

Data standardization, preprocessing, and
derivatives
In this section, we describe the data curation and standardiza-
tion process as well as the preprocessing applied to the standard-
ized data and the resulting “derivatives” (see Figure 4.3 for a
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Figure 4.3 Overview of the types of data and “derivatives” included in
AOMIC and the software packages used to preprocess and analyze them.

schematic overview). This section does not describe this process
separately for each dataset, because they are largely identically
standardized and (pre)processed. Exceptions to this will be ex-
plicitly mentioned. In this standardization process, we adhered
to the guidelines outlined in the Brain Imaging Data Structure
(BIDS, v1.2.2; Gorgolewski et al., 2016), both for the “raw” data
as well as the derivatives (whenever BIDS guidelines exist for
that data or derivative modality).

Raw data standardization

Before subjecting the data to any preprocessing pipeline, we con-
verted the data to BIDS using the in-house developed package
bidsify (see Code availability section for more details about the
software used in the standardization process). The “BIDSifi-
cation” process includes renaming of files according to BIDS
convention, conversion from Philips PAR/REC format to com-
pressed nifti, removal of facial characteristics from anatomi-
cal scans (“defacing”), and extraction of relevant metadata into
JSON files.
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The results from the standardization process were checked
using the bids-validator software package, which revealed no
validation errors. However, the validation process raised sev-
eral warnings about possible issues with the datasets (as shown
in the BIDS validation section in their OpenNeuro repositories),
which we explain in turn.

First, all three datasets contain subjects with incomplete data
(i.e., missing MRI or physiology data), which causes the “Not
all subjects contain the same files” warning. Second, the bids-
validator issues a warning that “[n]ot all subjects/sessions/runs
have the same scanning parameters”. One cause for this warn-
ing (in PIOP1 and PIOP2) is that the time to repetition (TR) pa-
rameter of some DWI scans varies slightly (PIOP1: min = 7382
ms, max = 7700, median = 7390; PIOP2: min = 7382, max =
7519, median = 7387), which is caused by acquiring the DWI
data with the shortest possible TR (i.e., TR = “shortest” setting
on Philips scanners; see Supplementary Tables C.1-C.4). Be-
cause the shortest possible TR depends on the exact angle of the
slice box, the actual TR varies slightly from scan to scan. No-
tably, this warning is absent for the ID1000 dataset, because the
TR value in the nifti file header is incorrect (i.e., it is set to 1
for each scan). Like the DWI scans in PIOP1 and PIOP2, the
DWI scans from ID1000 were acquired with the shortest possi-
ble TR, resulting in slightly different TRs from scan to scan (min
= 6307, max = 6838, median = 6312). The correct TR values in
seconds for each DWI scan in ID1000 was added to the dataset’s
participants.tsv file (with the column names “DWI_TR_run1”,
“DWI_TR_run2”, and “DWI_TR_run3”).

In addition, the functional MRI scans from ID1000 were
cropped in the axial and coronal direction by conservatively re-
moving axial slices with low signal intensity in order to save disk
space, causing slightly different dimensions across participants.
Finally, in PIOP2, the functional MRI scans from the stop-signal
task differ in the exact number of volumes (min = 210, max =
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250, median = 224) because the scan was stopped manually af-
ter the participant completed the task (which depended on their
response times).

Anatomical and functional MRI preprocessing

Results included in this manuscript come from preprocessing
performed using Fmriprep version 1.4.1 (RRID:SCR_016216;
O. Esteban, Markiewicz, Blair, Moodie, Isik, Erramuzpe, Kent,
Goncalves, DuPre, Snyder, Oya, et al., 2019; Esteban et al.,
2020), a Nipype based tool (RRID:SCR_002502; Gorgolewski
et al., 2011; Gorgolewski, Esteban, et al., 2017). Each T1w
(T1-weighted) volume was corrected for INU (intensity non-
uniformity) using N4BiasFieldCorrection v2.1.0 (Tustison et al.,
2010) and skull-stripped using antsBrainExtraction.sh v2.1.0
(using the OASIS template). Brain surfaces were reconstructed
using recon-all from FreeSurfer v6.0.1 (RRID:SCR_001847; Dale
et al., 1999), and the brain mask estimated previously was re-
fined with a custom variation of the method to reconcile ANTs-
derived and FreeSurfer-derived segmentations of the cortical
gray-matter of Mindboggle (RRID:SCR_002438; Klein et al.,
2017). Spatial normalization to the ICBM 152 Nonlinear Asym-
metrical template version 2009c (RRID:SCR_008796; Fonov et
al., 2009) was performed through nonlinear registration with
the antsRegistration tool of ANTs v2.1.0 (RRID:SCR_004757;
Avants et al., 2008), using brain-extracted versions of both
T1w volume and template. Brain tissue segmentation of cere-
brospinal fluid (CSF), white-matter (WM) and gray-matter
(GM) was performed on the brain-extracted T1w using FSL fast
(FSL v5.0.9, RRID:SCR_002823; Zhang et al., 2001).

Functional data was not slice-time corrected. Functional
data was motion corrected using mcflirt (FSL v5.0.9; Jenkinson
et al., 2002) using the average volume after a first-pass motion
correction procedure as the reference volume and normalized
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correlation as the image similarity cost function. “Fieldmap-
less” distortion correction was performed by co-registering the
functional image to the same-subject T1w image with inten-
sity inverted (Huntenburg, 2014; Wang et al., 2017), constrained
with an average fieldmap template (Treiber et al., 2016), imple-
mented with antsRegistration (ANTs). Note that this fieldmap-
less method was used even for PIOP2, which contained a phase-
difference (B0) fieldmap, because we observed that Fmriprep’s
fieldmap-based method led to notably less accurate unwarping
than its fieldmap-less method.

Distortion-correction was followed by co-registration to the
corresponding T1w using boundary-based registration (Greve
& Fischl, 2009) with 6 degrees of freedom, using bbregister
(FreeSurfer v6.0.1). Motion correcting transformations, field
distortion correcting warp, BOLD-to-T1w transformation and
T1w-to-template (MNI) warp were concatenated and applied
in a single step using antsApplyTransforms (ANTs v2.1.0) using
Lanczos interpolation.

Physiological noise regressors were extracted by applying
CompCor (Behzadi et al., 2007). Principal components were es-
timated for the two CompCor variants: temporal (tCompCor)
and anatomical (aCompCor). A mask to exclude signal with cor-
tical origin was obtained by eroding the brain mask, ensuring
it only contained subcortical structures. Six tCompCor compo-
nents were then calculated including only the top 5% variable
voxels within that subcortical mask. For aCompCor, six compo-
nents were calculated within the intersection of the subcortical
mask and the union of CSF and WM masks calculated in T1w
space, after their projection to the native space of each functional
run. Framewise displacement (Power et al., 2014) was calculated
for each functional run using the implementation of Nipype.

Many internal operations of Fmriprep use Nilearn
(RRID:SCR_001362; Abraham et al., 2014), principally within
the BOLD-processing workflow. For more details of the pipeline
see https://fmriprep.readthedocs.io/en/1.4.1/workflows.html.
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Diffusion MRI (pre)processing

DWI scans were preprocessed using a custom pipeline combin-
ing tools from MRtrix3 (Tournier et al., 2019) and FSL. Be-
cause we acquired multiple DWI scans per participant in the
ID1000 study (but not in PIOP1 and PIOP2), we concatenated
these files as well as the diffusion gradient table (bvecs) and b-
value information (bvals) prior to preprocessing. Using MR-
trix3, we denoised the diffusion-weighted data using dwidenoise
(Veraart, Fieremans, et al., 2016; Veraart, Novikov, et al., 2016),
removed Gibbs ringing artifacts using mrdegibbs (Kellner et al.,
2016), and performed eddy current and motion correction us-
ing dwipreproc. Notably, dwipreproc is a wrapper around the
GPU-accelerated (CUDA v9.1) FSL tool eddy (Andersson &
Sotiropoulos, 2016). Within eddy, we used a quadratic first-level
(–flm=quadratic) and linear second-level model (–slm=linear)
and outlier replacement (Andersson et al., 2016) with default
parameters (–repol). Then, we performed bias correction us-
ing dwibiascorrect (which is based on ANTs; v2.3.1), extracted
a brain mask using dwi2mask (Dhollander et al., 2016), and
corrected possible issues with the diffusion gradient table using
dwigradcheck (Jeurissen et al., 2014).

After preprocessing, using MRtrix3 tools, we fit a diffusion
tensor model on the preprocessed diffusion-weighted data us-
ing weighted linear least squares (with 2 iterations) as imple-
mented in dwi2tensor (Veraart et al., 2013). From the estimated
tensor image, a fractional anisotropy (FA) image was computed
and a map with the first eigenvectors was extracted using ten-
sor2metric. Finally, a population FA template was computed us-
ing population_template (using an affine and an additional non-
linear registration).

The following files are included in the DWI derivatives: a
binary brain mask, the preprocessed DWI data as well as pre-
processed gradient table (bvec) and b-value (bval) files, outputs
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from the eddy correction procedure (for quality control pur-
poses; see Technical validation section), the estimated param-
eters from the diffusion tensor model, the eigenvectors from the
diffusion tensor model, and a fractional anisotropy scalar map
computed from the eigenvectors. All files are named accord-
ing to BIDS Extension Proposal 16 (BEP016: diffusion weighted
imaging derivatives).

Freesurfer morphological statistics

In addition to the complete Freesurfer directories containing
the full surface reconstruction per participant, we provide a
set of tab-separated values (TSV) files per participant with sev-
eral morphological statistics per brain region for four different
anatomical parcellations/segmentations. For cortical brain re-
gions, we used two atlases shipped with Freesurfer: the Desikan-
Killiany (aparc in Freesurfer terms; Desikan et al., 2006) and
Destrieux (aparc.a2009 in Freesurfer terms; Destrieux et al.,
2010) atlases. For these parcellations, the included morpho-
logical statistics are volume in mm3, area in mm2, thickness
in mm, and integrated rectified mean curvature in mm−1. For
subcortical and white matter brain regions, we used the results
from the subcortical segmentation (aseg in Freesurfer terms)
and white matter segmentation (wmparc in Freesurfer terms)
done by Freesurfer. For these parcellations, the included mor-
phological statistics are volume in mm3 and average signal in-
tensity (arbitrary units). The statistics were extracted from
the Freesurfer output directories using the Freesufer functions
asegstats2table and aparcstats2table and further formatted using
custom Python code. The TSV files (and accompanying JSON
metadata files) are formatted according to BIDS Extension Pro-
posal 11 (BEP011: structural preprocessing derivatives).
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Voxel-based morphology

In addition to the Fmriprep-preprocessed anatomical T1-
weighted scans, we also provide voxelwise gray matter volume
maps estimated using voxel-based morphometry (VBM). We
used a modified version of the FSL VBM pipeline (http://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSLVBM; Douaud et al., 2007), an
optimised VBM protocol (Good, Johnsrude, et al., 2001b) car-
ried out with FSL tools (Smith et al., 2004). We skipped the
initial brain-extraction stage (fslvbm_1_bet) and segmentation
stage (first part of fslvbm_3_proc) and instead used the proba-
bilistic gray matter segmentation file (in native space) from Fm-
riprep (i.e., label-GM_probseg.nii.gz files) directly. These files
were registered to the MNI152 standard space using non-linear
registration (Andersson et al., 2007). The resulting images were
averaged and flipped along the x-axis to create a left-right sym-
metric, study-specific grey matter template. Second, all native
grey matter images were non-linearly registered to this study-
specific template and “modulated” to correct for local expansion
(or contraction) due to the non-linear component of the spatial
transformation.

Physiological noise processing

Physiology files were converted to BIDS-compatible compressed
TSV files using the scanphyslog2bids package (see Code avail-
ability). Each TSV file contains three columns: the first contains
the cardiac trace, the second contains the respiratory trace, and
the third contains the volume onset triggers (binary, where 1
represents a volume onset). Each TSV file is accompanied by a
JSON metadata file with the same name, which contains infor-
mation about the start time of the physiology recording relative
to the onset of the first volume. Because the physiology record-
ing always starts before the fMRI scan starts, the start time is
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always negative (e.g., a start time of -42.01 means that the phys-
iology recording started 42.01 seconds before the onset of the
first volume). After conversion to BIDS, the estimated volume
triggers and physiology traces were plotted, visually inspected
for quality, and excluded if either of the physiology traces had
missing data for more than ten seconds or if the volume triggers
could not be estimated.

The physiology data was subsequently used to estimate
fMRI-appropriate nuisance regressors using the TAPAS PhysIO
package (Kasper et al., 2017). Using this package, we specifically
estimated 18 “RETROICOR” regressors (Glover et al., 2000)
based on a Fourier expansion of cardiac (order: 2) and respira-
tory (order: 3) phase and their first-order multiplicative terms
(as defined in Harvey et al., 2008). In addition, we estimated a
heart-rate variability (HRV) regressor by convolving the cardiac
trace with a cardiac response function (Chang et al., 2009) and
a respiratory volume by time (RVT) regressor by convolving the
respiratory trace with a respiration response function (Birn et
al., 2008).

4.3 Data records

Data formats and types
In AOMIC, the majority of the data is stored in one of four
formats. First, all volumetric (i.e., 3D or 4D) MRI data is
stored in compressed “NIfTI” files (NIfTI-1 version; extension:
.nii.gz). NIfTI files contain both the data and metadata (stored
in the header) and can be loaded into all major neuroimag-
ing analysis packages and programming languages using, e.g.,
the nibabel package for Python (https://nipy.org/nibabel), the
oro.nifti package in R (https://cran.r-project.org/web/packages/
oro.nifti), and natively in Matlab (version R2017b and higher).
Second, surface (i.e., vertex-wise) MRI data is stored in “Gifti”
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files (https://www.nitrc.org/projects/gifti; extension: .gii). Like
NIfTI files, Gifti files contain both data and metadata and can
be loaded in several major neuroimaging software packages (in-
cluding Freesurfer, FSL, AFNI, SPM, and Brain Voyager) and
programming languages using, e.g., the nibabel package for
Python and the gifti package for R (https://cran.rstudio.com/
web/packages/gifti).

Third, data organized as tables (i.e., observations in rows
and properties in columns), such as physiological data and task-
fMRI event log files, are stored in tab-separated values (TSV)
files, which contain column names as the first row. TSV files
can be opened using spreadsheet software (such as Microsoft
Excel or Libreoffice Calc) and read using most major program-
ming languages. Fourth, (additional) metadata is stored as key-
value pairs in plain-text JSON files. A small minority of data in
AOMIC is stored using different file formats (such as hdf5 for
composite transforms of MRI data and some Freesurfer files),
but these are unlikely to be relevant for most users.

Apart from data formats, we can distinguish different data
types within AOMIC. Following BIDS convention, data types are
distinguished based on an “identifier” at the end of the file name
(before the extension). For example, T1-weighted files (e.g.,
sub-0001_T1w.nii.gz) are distinguished by the *_T1w* identifier
and event log files for task-based functional MRI data (e.g., sub-
001_task-workingmemory_acq-seq_events.tsv) are distinguished
by the *_events* identifier. All data types and associated identi-
fiers within AOMIC are listed in Supplementary Table C.6.

Data repositories used
Data from AOMIC can be subdivided into two broad cate-
gories. The first category encompasses all subject-level data,
both raw data and derivatives. The second category encom-
passes group-level aggregates of data, such as an average (across
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subjects) tSNR map or group-level task fMRI activation maps.
Data from these two categories are stored in separate, dedicated
repositories: subject-level data is stored on OpenNeuro (https:
//openneuro.org; K Gorgolewski et al., 2017) and the subject-
aggregated data is stored on NeuroVault (https://neurovault.org;
Gorgolewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet,
Sochat, Nichols, Poldrack, Poline, Yarkoni, et al., 2015). Data
from each dataset — PIOP1, PIOP2, and ID1000 — are stored
in separate repositories on OpenNeuro (L. Snoek et al., 2020b,
2020d, 2020f) and NeuroVault (L. Snoek et al., 2020a, 2020c,
2020e). URLs to these repositories for all datasets can be found
in Table 4.5. Apart from the option to download data using a web
browser, we provide instructions to download the data program-
matically on https://nilab-uva.github.io/AOMIC.github.io.

Table 4.5 Data repository identifiers for subject data (OpenNeuro) and
group-level data (NeuroVault).

Repository ID1000 PIOP1 PIOP2

OpenNeuro ID ds003097 ds002785 ds002790

Neurovault ID 7105 7103 7104

Note:
To go to the OpenNeuro web repositories, prefix the OpenNeuro ID with
”https://openneuro.org/datasets/”. To go to the NeuroVault web reposito-
ries, prefix the NeuroVault ID with ”https://neurovault.org/collections/”.

Data anonymization

In curating this collection, we took several steps in ensuring the
anonymity of participants. All measures were discussed with the
data protection officer of the University of Amsterdam and the
data steward of the department of psychology, who deemed the
anonymized data to be in accordance with the European General
Data Protection Regulation (GDPR).
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First, all personally identifiable information (such as sub-
jects’ name, date of birth, and contact information) in all
datasets were irreversibly destroyed. Second, using the pydeface
software package (Gulban et al., 2019), we removed facial char-
acteristics (mouth and nose) from all anatomical scans, i.e., the
T1-weighted anatomical scans and (in PIOP2) magnitude and
phase-difference images from the B0 fieldmap. The resulting de-
faced images were checked visually to confirm that the defacing
succeeded. Third, the data files were checked for timestamps
and removed when present. Lastly, we randomized the subject
identifiers (sub-xxxx) for all files. In case participants might have
remembered their subject number, they will not be able to look
up their own data within our collection.

4.4 Technical validation
In this section, we describe the measures taken for quality con-
trol of the data. This is described per data type (e.g., anatomical
T1-weighted images, DWI images, physiology, etc.), rather than
per dataset, as the procedure for quality control per data type
was largely identical across the datasets. Importantly, we take a
conservative approach towards exclusion of data, i.e., we gener-
ally did not exclude data unless (1) it was corrupted by scanner-
related incorrigible artifacts, such as reconstruction errors, (2)
when preprocessing fails due to insufficient data quality (e.g., in
case of strong spatial inhomogeneity of structural T1-weighted
scans, preventing accurate segmentation), (3) an absence of a us-
able T1-weighted scan (which is necessary for most preprocess-
ing pipelines), or (4) incidental findings. This way, the data from
AOMIC can also be used to evaluate artifact-correction methods
and other preprocessing techniques aimed to post-hoc improve
data quality and, importantly, this places the responsibility for
inclusion and exclusion of data in the hands of the users of the
datasets.
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Researchers not interested in using AOMIC data for artifact-
correction or preprocessing techniques may still want to exclude
data that do not meet their quality standards. As such, we in-
clude, for each modality (T1-weighted, BOLD, and DWI) sepa-
rately, a file with several quality control metrics across subjects.
The quality control metrics for the T1-weighted and functional
(BOLD) MRI scans were computed by the Mriqc package (O. Es-
teban, Birman, et al., 2017) and are stored in the group_T1w.tsv
and group_T1w.tsv files in the mriqc derivatives folder. The qual-
ity control metrics for the DWI scans were derived from the out-
put of FSL’s eddy algorithm and are stored in the group_dwi.tsv
file in the dwipreproc derivatives folder. Using these precom-
puted quality control metrics, researchers can decide which data
to include based on their own quality criteria.

T1-weighted scans
All T1-weighted scans were run through the Mriqc pipeline,
which outputs several quality control metrics as well as a report
with visualizations of different aspects of the data. All individ-
ual subject reports were visually checked for artifacts including
reconstruction errors, failure of defacing, normalization issues,
and segmentation issues (and the corresponding data excluded
when appropriate). In Figure 4.4, we visualize several qual-
ity control metrics related to the T1-weighted scans across all
three datasets. In general, data quality appears to increase over
time (with ID1000 being the oldest dataset, followed by PIOP1
and PIOP2), presumably due to improvements in hardware (see
Scanner details and general scanning protocol). All quality con-
trol metrics related to the T1-weighted scans, including those
visualized in Figure 4.4, are stored in the group_T1w.tsv file in
the mriqc derivatives folder.
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Figure 4.4 Quality control metrics related to the T1-weighted scans.
CNR: contrast-to-noise ratio (Magnotta et al., 2006); CJV: coefficient of joint
variation (Ganzetti et al., 2016), an index reflecting head motion and spa-
tial inhomogeneity; EFC: entropy-focused criterion (Atkinson et al., 1997),
an index reflecting head motion and ghosting; INU: intensity non-uniformity,
an index of spatial inhomogeneity; WM2MAX: ratio of median white-matter
intensity to the 95% percentile of all signal intensities; low values may lead
to problems with tissue segmentation.

Functional (BOLD) scans
Like the T1-weighted images, the functional (BOLD) scans were
run through the Mriqc pipeline. The resulting reports were vi-
sually checked for artifacts including reconstruction errors, reg-
istration issues, and incorrect brain masks.

In Figure 4.5, we visualize several quality control metrics
related to the functional scans across all three datasets. Sim-
ilar to the T1-weighted quality control metrics, the functional
quality control metrics indicate an improvement of quality over
time. Also note the clear decrease in temporal signal-to-noise
ratio (tSNR) for multiband-accelerated scans (consistent with
Demetriou et al. (2018)). All quality control metrics related to
the functional MRI scans, including those visualized in Figure
4.5, are stored in the group_bold.tsv file in the mriqc derivatives
folder.

In Figure 4.6, we visualize these tSNR maps for each dataset
(and separately for the sequential and multiband scans of
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Figure 4.5 Quality control metrics related to the functional (BOLD) MRI
scans. SNR: signal-to-noise ratio, an index of signal quality; FD: framewise
displacement (Power et al., 2012), an index of overall movement; GCOR:
global correlation, an index of the presence of global signals (Saad et al.,
2013); GSR: ghost-to-signal ratio, an index of ghosting along the phase-
encoding axis.

PIOP1). Again, there appears to be an increase in tSNR across
time. Corresponding whole-brain tSNR maps can be viewed and
downloaded from NeuroVault (i.e., files with the *_tsnr* identi-
fier).

For the fMRI data with an explicit task (i.e., all fMRI data
except for the PIOP resting-state fMRI scans and the ID1000
movie watching fMRI scan), we additionally computed group-
level whole-brain statistics maps. To do so, using the nistats
Python package, we ran mass-univariate first-level GLS models
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Figure 4.6 Average (across subjects and runs) temporal signal-to-noise
(tSNR) maps of each type of functional (BOLD) MRI scan in each dataset.
Unthresholded whole-brain tSNR maps are available on NeuroVault.
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(using an AR1 noise model) based on a design matrix includ-
ing task-regressors based on the events convolved with a canon-
ical HRF function as well as a discrete cosine basis set func-
tioning as a high-pass filter of 128 seconds and six motion re-
gressors and computed first-level contrast maps for each subject
which were subsequently analyzed in a random effects group-
level (intercept) model, resulting in whole-brain z-value maps.
The data was never spatially smoothed. In Figure 4.7, we show
the (uncorrected) whole-brain group-level results for each task.
Note that we chose these specific contrasts to demonstrate that
the tasks elicit to-be expected effects (e.g., amygdala activity in
the emotion matching task and cingulate cortex activity in the
gender-stroop task). Different, and more sophisticated analy-
ses, including analysis of between-subject factors, are possible
with this data and the associated event files.

To validate the quality of the resting-state functional MRI
scans in PIOP1 and PIOP2, we ran dual regression analyses
(Beckmann et al., 2009) using the spatial ICA maps from Smith
and colleagues (10-component version; Smith et al., 2009). Prior
to the dual regression analyses, the data was cleaned and high-
pass filtered (using a 128 second cutoff) by regressing out a dis-
crete cosine basis set and six motion parameter estimates and
spatially smoothed with a Gaussian kernel with a 5 mm FWHM.
Figure 4.8 shows the group-level dual regression results from
both PIOP1 and PIOP2 for the first four components next to
the original ICA map from Smith et al. (2009).

Finally, to assess the quality of the ID1000 functional MRI
data, we performed a voxelwise whole-brain “inter-subject cor-
relation” (ISC) analysis (Hasson et al., 2004), using the BrainIAK
software package (Kumar et al., 2020) on data from a subset of
100 participants (randomly drawn from the ID1000 dataset).
Before computing the inter-subject correlations, the data were
masked by an intersection of a functional brain mask and a grey
matter mask (probability > 0.1). Low-frequency drift (with a
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Emo. matching: emotion > control Emo. matching: emotion > control

Working memory: active > passive Working memory: active > passive

Anticipation: negative > neutral

Stop-signal: failed stop > go

Faces: expressive > neutral
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X = 45 Y = -39 Z = -15.3
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X = 42 Y = -54 Z = -12
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Figure 4.7 Results from task-specific group-level analyses. Brain maps
show uncorrected effects (p < 0.00001, two-sided) and were linearly interpo-
lated for visualization in FSLeyes. Unthresholded whole-brain z-valuemaps
are available on NeuroVault. Unthresholded whole-brain z-value maps are
available on NeuroVault.
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Figure 4.8 Group-level dual regression results for the first four compo-
nents of Smith and colleagues (2009). Unthresholded z-value maps are
available on NeuroVault.

cutoff of 128 seconds), the mean signal within the cerebrospinal
fluid, global (whole-brain average) signal, and six motion pa-
rameters were regressed out before computing the ISCs. The
average (across subjects) voxelwise ISCs are visualized in Fig-
ure 4.9, which shows the expected inter-subject synchrony in
the ventral and dorsal visual stream. The emphasis on variance
in visual parameters rather than narrative when composing the
movie stimulus likely caused the high ISC values to be largely
restricted to visual brain areas.

Diffusion-weighted scans
Before preprocessing, the b=0 volume from each DWI scan was
extracted and visually checked for severe artifacts and recon-
struction errors (in which case the data was excluded). After
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Figure 4.9 Results from the voxelwise ISC analysis, arbitrarily thresh-
olded at 0.1. An unthresholded whole-brain ISC map is available on Neu-
roVault.

preprocessing and DTI model fitting, we furthermore visualized
each estimated fractional anisotropy (FA) map and the color-
coded FA-modulated (absolute) eigenvectors for issues with the
gradient directions. These images are included in the DWI
derivatives.

Furthermore, we extracted quality control metrics based on
outputs from the eddy correction/motion correction procedure
in the DWI preprocessing pipeline as implemented in FSL’s eddy
algorithm (based on the procedure outlined in Bastiani et al.
(2019)). Specifically, we computed the mean framewise dis-
placement across volumes based on the realignment parameters
from motion correction, the percentage of “outlier slices” (as de-
termined by FSL eddy) in total and per volume, and the standard
deviation of the estimated linear eddy current distortions across
volumes. These metrics are visualized in Figure 4.10. Note that
the y-axis for the standard deviation of the eddy currents for
ID1000 has a larger range than for PIOP1 and PIOP2 to show
the scans with particularly strong eddy current fluctuations.

Finally, for each dataset, we transformed all preprocessed
DTI eigenvectors to a population template estimated on all FA
images using MRTrix’ population_template (using a linear fol-
lowed by a non-linear registration procedure) and computed the
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Figure 4.10 Quality control metrics related to the diffusion-weighted
scans. FD: framewise displacement, Std EC: standard deviation of the lin-
ear terms of the eddy current distortions in Hz/mm.

voxelwise median across subjects. The median eigenvector im-
ages are visualized in Figure 4.11 as “diffusion-encoded color”
(DEC) images, in which values are modulated by the associated
FA values.

Physiological data
After conversion to BIDS, physiological data was visually
checked for quality by plotting the scanner triggers (i.e., vol-
ume onsets) and the cardiac and respiratory traces. Files miss-
ing a substantial window of data (>10 seconds) were excluded
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Figure 4.11 Diffusion-encoded color images of the FA-modulated median
DTI eigenvectors across subjects. Red colors denote preferential diffusion
along the sagittal axis (left-right), green colors denote preferential diffusion
along the coronal axis (anterior-posterior), and blue colors denote preferen-
tial diffusion along the axial axis (inferior-superior). Brighter colors denote
stronger preferential diffusion.
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as well as files for which the scanner triggers could not be es-
timated reliably. Figures of the physiology traces and scanner
triggers for each file are included in the physiology derivatives.
Additionally, using the same approach as described for the task-
based technical validation analyses, we fit first-level (subject-
specific) and subsequently group-level (subject-average) models
using the physiology regressors (all 18 RETROICOR regressors,
one HRV, and one RVT regressor) for each dataset. In Figure
4.12, we visualize the effects of the different RETROICOR com-
ponents (respiratory, cardiac, and interaction regressors; an F-
test, but converted to and visualized as z-scores) and the HRV
and RVT regressors (a t-test, but converted to and visualized as
z-scores). Unthresholded whole-brain maps are available from
NeuroVault.

Psychometric data
The patterns of correlations within the scales of the question-
naires are consistent with those reported in literature, indicating
that this data is overall reliable. The pattern of correlations be-
tween scales of different questionnaires and external variables is
also consistent with those reported in literature and what would
be expected on theoretical grounds.

Intelligence Structure Test (IST)

The subscales of the IST (fluid and crystallized intelligence and
memory) are strongly correlated with each other. The validity
of the measure data is supported by the correlation with rele-
vant external variables like educational level, r(926) = 0.46)
and background SES, r(926) = 0.35 (see Table 4.6).
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Figure 4.12 Results from group-level physiology analyses. Brain maps
show uncorrected effects (thresholded arbitrarily at z > 6) and were lin-
early interpolated for visualization in FSLeyes. Unthresholded whole-brain
z-value maps are available on NeuroVault.
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Table 4.6 Correlations between total score, and subscales of the IST and
relevant external variables.

IST (N =
926)

IST Int IST
Crystal

IST
Memory

IST Fluid Background
SES

Education

IST Int 1 0.82** 0.79** 0.96** 0.35** 0.46**

IST Crys-
tallized

1 0.58** 0.68** 0.37** 0.44**

IST
Memory

1 0.65** 0.25** 0.39**

IST Fluid 1 0.31** 0.41**

Background
SES

1 0.38**

Education 1

Note: IST: Intelligence Structure Test, Int: Total Intelligence, SES: background social-
economic status. ** indicates p < 0.01.

Personality: NEO-FFI

The cross-correlation patterns of the five NEO-FFI scales are de-
picted in Table 4.7. Significant correlations exist between the
scales, and the correlation pattern is overall consistent with the
reported norm data for this test (Hoekstra et al., 1996). The cor-
relation between cross-correlation patterns of the three datasets
is very consistent (r = 0.88 between PIOP1 and PIOP2, and on
average r = 0.74 between ID1000 and PIOP), with as a notable
outlier a negative correlation, r(928) = −0.13, p < 0.001, be-
tween extraversion and agreeableness in the ID1000 dataset and
a positive correlation for these scales in the PIOP1, r(216) =
0.20, p < 0.005, and PIOP2, r(226) = 0.26, p < 0.001. A
source for this discrepancy could be the difference in population
sample between the PIOP1 and PIOP2 studies and the ID1000
study.
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Table 4.7 Cross-correlations for the subscales of the NEO-FFI for the
ID1000, PIOP1 and PIOP2 samples.

ID1000 (N
= 927)

Neuroticism Extraversion Openness Agreeableness Conscientiousness

Neuroticism 1 -0.30** 0.15** -0.08* -0.43**

Extraversion 1 0.20** -0.13** 0.12**

Openness 1 -0.06 -0.19**

Agreeableness 1 0.16**

Conscientiousness 1

PIOP1 (N
= 216)
Neuroticism 1 -0.29** 0.18** 0 -0.25**

Extraversion 1 -0.05 0.20** 0.14*

Openness 1 0.08 -0.18**

Agreeableness 1 0.20**

Conscientiousness 1

PIOP2 (N
= 226)
Neuroticism 1 -0.38** 0.12 -0.07 -0.24**

Extraversion 1 0.11 0.26** 0.25**

Openness 1 0.02 -0.04

Agreeableness 1 0.15*

Conscientiousness 1

Note: With the exception of the correlation between agreeableness and extraversion the
cross-correlation patterns are very similar across samples. * indicates p<0.05. ** indicates
p<0.01.

In terms of external validity we note that openness to experi-
ence has a positive correlation with intelligence in all three sam-
ples (ID1000: r(925) = 0.22, p < 0.001, PIOP1: r(216) = 0.25,
p = 0.000196), PIOP2: r(225) = 0.24, p = 0.000276).
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BIS/BAS

The cross-correlation patterns of the BIS/BAS scales are depicted
in Table 4.8. The cross-correlation between the scales are sim-
ilar to the one reported by Franken et al. (2005) and contrary
to what Carver & White (1994) predicted, with a positive corre-
lation between the three different BAS-scales, but also between
BIS and BAS-Reward, r(927) = 0.194.

Table 4.8 Cross-correlations for the subscales of the BIS/BAS for the
ID1000 sample.

BIS/BAS (N =
928)

BAS drive BAS fun BAS reward BIS

BAS drive 1 0.45** 0.34** -0.19**

BAS fun 1 0.39** -0.13**

BAS reward 1 0.19**

BIS 1

Note: ** indicates p<0.01.

STAI-T

The STAI-T scale measures trait anxiety. Because this instru-
ment only consists of one scale we evaluate its reliability on the
degree in which it shows correlations with other questionnaire
scales that also have a pretension of measuring negative emo-
tionality. Because we observe positive correlations with both
Neuroticisms, r(927) = 0.77, p < 0.001) and BIS, r(927) =
0.514, p < 0.001) we conclude that the reported scales are reli-
able and consistent.

Code availability
All code used for curating, annotating, and (pre)processing
AOMIC are version-controlled using git and can be found in
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project-specific Github repositories within the NILAB-UvA
Github organization: https://github.com/orgs/NILAB-UvA.
Many pre and postprocessing steps were identical across
datasets, so the code for these procedures is stored in
a single repository: https://github.com/NILAB-UvA/
AOMIC-common-scripts. Possible parameters are all hard-
coded within the scripts, except for a single positional param-
eter pointing to the directory to be processed. For custom
Python-based scripts, we used Python version 3.7. All code was
developed on a Linux system with 56 CPUs (Intel Xeon E5-2680
v4, 2.40GHz) and 126GB RAM running Ubuntu 16.04. All
curation, preprocessing, and analyses were run on said Linux
system, apart from the Fmriprep, Mriqc, and Freesurfer analy-
ses, which were run in a Docker container provided by those
software packages. Custom code was parallelized to run on
multiple CPUs concurrently using the Python package joblib
(https://joblib.readthedocs.io).

For curation, preprocessing, and analysis of the datasets,
we used a combination of existing packages and custom scripts
(written in Python or bash). To convert the data to the Brain
Imaging Data Structure (BIDS), we used the in-house developed,
publicly available software package bidsify (v0.3; https://github.
com/NILAB-UvA/bidsify), which in turn uses the dcm2niix
(v1.0.20181125; Li et al., 2016) to convert the Philips PAR/REC
files to compressed nifti files. In contrast to the data from PIOP1
and PIOP2 (which were converted to nifti using dcm2niix),
r2aGUI (v2.7.0; http://r2agui.sourceforge.net) was used to con-
vert the data from ID1000. Because r2aGUI does not correct
the gradient table of DWI scans for slice angulation, we used the
angulation_correction_Achieva Matlab script (version Decem-
ber 29, 2007) from Jonathan Farrell to do so (available for pos-
terity at https://github.com/NILAB-UvA/ID1000/blob/master/
code/bidsify/DTI_gradient_table_ID1000.m). To remove facial
characteristics from anatomical scans, we used the pydeface
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4.4. Technical validation

package (v.1.1.0; Gulban et al., 2019). Finally, to convert the
raw physiology files (i.e., Philips “SCANPHYSLOG” files) to
BIDS, we used the in-house developed, publicly available Python
package scanphyslog2bids (v0.1; https://github.com/lukassnoek/
scanphyslog2bids). The outputs from the BIDS-conversion
pipeline were checked using the bids-validator software package
(v1.4.3).

Anatomical and functional MRI preprocessing were done
using Fmriprep (v1.4.1; see the Derivatives section for exten-
sive information about Fmriprep’s preprocessing pipeline]. For
our DWI preprocessing pipeline, we used tools from the MR-
trix3 package (www.mrtrix.org; v3.0_RC3; Tournier et al., 2019)
and FSL (v6.0.1; Jenkinson et al., 2012). For the VBM and dual
regression pipelines, we used FSL (v6.0.1; Douaud et al., 2007;
Good, Johnsrude, et al., 2001b; Smith et al., 2004). To create
the files with Freesurfer-based metrics across all participants, we
used Freesurfer version 6.0.095. Physiological nuisance regres-
sors (RETROICOR and HRV/RVT regressors) were estimated
using the TAPAS PhysIO Matlab package (v3.2.0; Kasper et al.,
2017).

First-level functional MRI analyses for technical validation
were implemented using the Python package nistats (v0.0.1b2;
Abraham et al., 2014) and nilearn (v0.6.2; Abraham et al., 2014;
Pedregosa et al., 2011). For the inter-subject correlation anal-
ysis the Brain Imaging Analysis Kit was used (BrainIAK, http:
//brainiak.org, v0.10; RRID:SCR_014824; Kumar et al., 2020).
Plotting brain images was done using FSLeyes (v0.32; McCarthy,
2021) and plotting statistical plots was done using the Python
packages seaborn (Waskom et al., 2020) and Matplotlib (Hunter,
2007).
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Chapter 5

Choosing to view morbid
information involves reward

circuitry

This chapter has been published as: Oosterwijk, S., Snoek, L., Tekop-
pele, J., Engelbert, L. H., & Scholte, H. S. (2020). Choosing to view
morbid information involves reward circuitry. Scientific reports, 10(1),
1-13.
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Abstract People often seek out stories, videos or images
that detail death, violence or harm. Considering the ubiquity of
this behavior, it is surprising that we know very little about the
neural circuits involved in choosing negative information. Us-
ing fMRI, the present study shows that choosing intensely neg-
ative stimuli engages similar brain regions as those that support
extrinsic incentives and “regular” curiosity. Participants made
choices to view negative and positive images, based on nega-
tive (e.g., a soldier kicks a civilian against his head) and positive
(e.g., children throw flower petals at a wedding) verbal cues. We
hypothesized that the conflicting, but relatively informative act
of choosing to view a negative image, resulted in stronger acti-
vation of reward circuitry as opposed to the relatively uncom-
plicated act of choosing to view a positive stimulus. Indeed, as
preregistered, we found that choosing negative cues was associ-
ated with activation of the striatum, inferior frontal gyrus, an-
terior insula, and anterior cingulate cortex, both when contrast-
ing against a passive viewing condition, and when contrasting
against positive cues. These findings nuance models of decision-
making, valuation and curiosity, and are an important starting
point when considering the value of seeking out negative con-
tent.
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5.1 Introduction
Humans are active agents who often deliberately expose them-
selves to “morbid” information (e.g., information involving
death, violence or harm). People choose to watch gruesome doc-
umentaries, click on links detailing terrifying attacks and visit
locations of horrible events. Surprisingly, the fact that people
experience curiosity for negative information, and often act on
this feeling, is rarely addressed in theoretical models of curiosity
and decision-making. Moreover, empirical work on this phe-
nomenon is markedly limited and studies investigating the neu-
ral circuits involved in choosing negative information are vir-
tually non-existent. Nevertheless, “morbid curiosity” is an im-
portant topic for investigation, because this ubiquitous behavior
appears to be at odds with the idea that value and reward drive
human information seeking. The present paper aims to expand
the scientific inquiry of curiosity and choice, by investigating
how the brain, and reward-related brain regions in particular,
represent a deliberate choice to view intensely negative images
that portray death, violence or harm.

In the last decades, much progress has been made in un-
derstanding the neuroscience of choice, valuation and curiosity.
Yet, when studying choice, decision-making scientists typically
focus on extrinsically rewarding stimuli, such as monetary re-
wards (Braver et al., 2014). Decisions regarding intrinsically re-
warding stimuli are targeted less frequently (Murayama, 2018)
and even less is known about the neural representation of seek-
ing negative information that, at first glance, does not seem to
have reward value at all (Elliot, 2006). Similarly, in the field of
curiosity — defined as an intrinsically motivated drive state for
information (Golman & Loewenstein, 2015; Gottlieb et al., 2013;
Kidd & Hayden, 2015) — research on curiosity for negative in-
formation is scarce (Murayama, 2018; see for exceptions Oost-
erwijk, 2017a; Hsee & Ruan, 2016; Rimé et al., 2005; Zuckerman
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& Litle, 1986). A handful of neuroscience studies have demon-
strated that curiosity engages similar neural circuits as extrinsic
reward, but only when examining positive or neutral material,
such as trivia questions (e.g., Gruber et al., 2014; Kang et al.,
2009). At present, it is thus unclear whether curiosity for “mor-
bid” information is supported by similar neural mechanisms as
those that support extrinsic incentives and “regular” curiosity.

Neuroscientific evidence suggests that curiosity, choice and
reward are supported by a highly similar constellation of
brain regions4,13. Reward-related decision making, predom-
inantly studied by focusing on monetary gains or losses, en-
gages the dorsal striatum (caudate, putamen), ventral stria-
tum (NAcc), orbitofrontal cortex (OFC), bilateral anterior in-
sula, anterior cingulate cortex (ACC), dorsomedial prefrontal
cortex/supplementary motor area (dmPFC/SMA) and frontal
and parietal regions often associated with cognitive con-
trol14,15,16,17,18. Several studies targeting curiosity demon-
strated similar neural regions. For example, Kang and col-
leagues12 found increased activation in the inferior frontal
gyrus (IFG), caudate and putamen when inducing curiosity by
presenting trivia questions. When curiosity was relieved (i.e.,
when the answer to the question was given) they found engage-
ment of the putamen and IFG. In another study targeting trivia
questions, Gruber and colleagues11 found increased activation
in the dorsal and ventral striatum and IFG for questions associ-
ated with high curiosity ratings. Other work has shown that the
induction and relief of curiosity engages regions that are asso-
ciated with salience detection and uncertainty19,20, including
the anterior insula and ACC21,22. In short, the limited work on
curiosity so far, demonstrates that curiosity for relatively posi-
tive and neutral material engages neural regions that are also re-
cruited during the computation of value and the anticipation of
reward. Whether these regions also engage when people act on
their curiosity for negatively valenced information is currently
unknown.
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Neuroscientific evidence suggests that curiosity, choice and
reward are supported by a highly similar constellation of brain
regions (Kidd & Hayden, 2015; Sakaki et al., 2018). Reward-
related decision making, predominantly studied by focusing on
monetary gains or losses, engages the dorsal striatum (cau-
date, putamen), ventral striatum (NAcc), orbitofrontal cor-
tex (OFC), bilateral anterior insula, anterior cingulate cor-
tex (ACC), dorsomedial prefrontal cortex/supplementary mo-
tor area (dmPFC/SMA) and frontal and parietal regions often
associated with cognitive control (Bartra et al., 2013; Diekhof
et al., 2012; Levy & Glimcher, 2012; Liu et al., 2011; Samanez-
Larkin & Knutson, 2015). Several studies targeting curiosity
demonstrated similar neural regions. For example, Kang et al.
(2009) found increased activation in the inferior frontal gyrus
(IFG), caudate and putamen when inducing curiosity by pre-
senting trivia questions. When curiosity was relieved (i.e., when
the answer to the question was given) they found engagement
of the putamen and IFG. In another study targeting trivia ques-
tions, Gruber et al. (2014) found increased activation in the
dorsal and ventral striatum and IFG for questions associated
with high curiosity ratings. Other work has shown that the in-
duction and relief of curiosity engages regions that are associ-
ated with salience detection and uncertainty (Menon & Uddin,
2010; Singer et al., 2009), including the anterior insula and ACC
(Jepma et al., 2012; Lieshout et al., 2018). In short, the limited
work on curiosity so far, demonstrates that curiosity for rela-
tively positive and neutral material engages neural regions that
are also recruited during the computation of value and the an-
ticipation of reward. Whether these regions also engage when
people act on their curiosity for negatively valenced information
is currently unknown.

In the present study, we tested the preregistered hypothesis
that the striatum and IFG (ROI-analyses) and the anterior in-
sula and ACC (whole-brain analyses) will engage more when
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people deliberately choose to view negative images, as com-
pared to a passive viewing condition. This hypothesis reflects
our assumption that “morbid curiosity”, expressed by a choice
to view a negative stimulus, engages similar neural regions as
regular curiosity (Gruber et al., 2014; Jepma et al., 2012; Kang
et al., 2009; Lieshout et al., 2018; see for an overview Gruber
& Ranganath, 2019). In addition, we tested a second hypothe-
sis that the regions described above will engage more strongly
when people choose to view a negative stimulus, as compared
to a positive stimulus. This hypothesis is based on our assump-
tion that the informational value of negative images is relatively
high. Compared to positive information, negative information
may be more novel, rare, deviant, uncertain, challenging or com-
plex (Baumeister et al., 2001; Unkelbach et al., 2008) — these
information characteristics engage reward circuitry and evoke
curiosity (Berlyne, 1966; Kashdan & Silvia, 2009; Kidd & Hay-
den, 2015; Sakaki et al., 2018). Furthermore, a choice for nega-
tivity may involve a tradeoff between benefits (e.g., understand-
ing something complex) and costs (e.g., being emotionally per-
turbed by a stimulus). Choosing a positive stimulus (e.g., view-
ing a family picnicking in the park) may not involve such costs,
and may also have less benefits in terms of accessing novel, de-
viant or complex information. In this sense, choosing negativity
(or “morbid curiosity”) is a conflict state; people want informa-
tion, without predicting that they will like the information (see
also Rimé et al., 2005; Litman, 2005). Previous work suggests
that reward circuitry engagement is most pronounced when ac-
tions or decisions are ambiguous or unclear (Floresco, 2015). In
line with this, we predict that the conflicting, but relatively infor-
mative act of choosing to view a negative image will paradoxi-
cally result in stronger activation of reward circuitry as opposed
to the relatively uncomplicated act of choosing to view a positive
stimulus.

We build upon previous work that demonstrates that people
are interested in and fascinated by negative images (Oosterwijk
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et al., 2016; Oosterwijk, 2017a). The present study specifically
targets choice for social negative images (i.e., displaying death,
violence or harm within a social context), because we found in
previous research that people prefer to view these stimuli over
neutral alternatives and choose to view these stimuli more often
than images of attacking animals and graphic, decontextualized
mutilation (Oosterwijk, 2017a). We used an established choice
paradigm (Oosterwijk, 2017a) that presented participants with
choices to view social images that depicted negative and positive
situations, taken from validated affective picture databases. Im-
portantly, this paradigm solely targets intrinsic motivation; par-
ticipants were not financially rewarded for their choices. More-
over, this paradigm targets a behavioral expression of “wanting”,
and not the extent to which people “like” the images (Berridge
et al., 2009; Litman, 2005). The active-choice condition was
compared to a passive-viewing condition, using a yoked proce-
dure that has been previously used to study responses to control-
lable and incontrollable stressors (Amat et al., 2005; Wood et al.,
2015). In the present study, a yoked design allowed us to inves-
tigate the effect of choice, while controlling for general affective,
semantic and visual processing.

In the choice condition, people were presented with verbal
cues, describing negative images (e.g., a soldier kicks a civilian
against his head) and positive images (e.g., children throw flower
petals at a wedding). The presentation of the verbal cue was la-
beled the induction phase (see Figure 5.1). Following the cue,
participants chose whether they wanted to see the image cor-
responding to the description, or not. In the relief phase (see
Figure 5.1), participants viewed the corresponding image when
responding yes and a blurred version when responding no. The
passive-viewing condition was fully yoked to the active-choice
condition. In other words, each participant in the passive-
viewing condition did not make choices, but was confronted
with the choice profile of a participant in the active-choice con-
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Figure 5.1Overview of paradigm. (A) The setup of the trials in the choice-
condition and passive-viewing condition. Note that in the active-choice con-
dition, participants chose whether they wanted to see the image correspond-
ing to the description during the yes/no response event. In the passive-
viewing condition participants did not choose, but confirmed the decision
seemingly determined by the computer during the yes/no response event.
(B) An example of a negative description and the consequence of a yes re-
sponse (either given by the participant, or determined by the computer). (C)
An example of a positive description and the consequence of a no response
(either given by the participant, or determined by the computer).

dition. Importantly, this yoked design isolates the psychologi-
cal process that we aim to investigate (i.e., a deliberate choice to
view a stimulus), while keeping all other factors constant (i.e.,
cues and images). In line with curiosity theories that argue that
exploratory behavior is an important component of curiosity
(Kashdan & Silvia, 2009; Litman, 2005; Loewenstein, 1994), we
propose that the potential to choose will make participants’ sub-
jective experience of curiosity more salient. In other words, par-
ticipants’ subjective state of curiosity may be more at the fore-
front of consciousness in the active-choice condition (because it
will inform participants’ decisions) than in the passive-viewing
condition.

We selected positive and negative images from the Interna-
tional Affective Picture System database (Lang et al., 1997) and

171



5.1. Introduction

the Nencki Affective Picture System database (Marchewka et al.,
2014). Importantly, we matched negative and positive images
in terms of valence extremity to ensure that, on average, posi-
tive images were perceived as equally positive as negative stim-
uli were perceived negative. A similar procedure was performed
for the positive and negative descriptions (i.e., cues; see Methods
section for further details).

Our scanning protocol was performed on a 3 T scanner.
For all details on image acquisition, preprocessing and first- and
second-level analyses, please see the Methods section. Our anal-
ysis protocol held confirmatory and exploratory analyses. Hy-
potheses and corresponding contrasts for the confirmatory anal-
yses, exclusion criteria, ROIs and corrections for multiple com-
parisons were preregistered on the Open Science Framework,
prior to data analysis (osf.io/gdtk9; Oosterwijk, 2017b).

The first-level model included six predictors to capture the
research design: 2 (phase: induction phase vs. relief phase) × 2
(valence: negative vs. positive) × 2 (choice: yes, full image vs. no,
blurred image). Additionally, we added a single predictor for
the motor response associated with the decision/confirmation
response and six motion predictors based on estimated motion
correction parameters. First level contrasts only involved trials
associated with yes choices (i.e., full image trials); trials associ-
ated with no responses (i.e., blurred image trials) were not used
for further group level analysis.

In the ROI-based analyses, we focused on voxels within
two a-priori defined ROIs: bilateral striatum and bilateral infe-
rior frontal gyrus (IFG). The ROIs were based on the Harvard-
Oxford Subcortical Atlas (striatum; caudate, putamen and nu-
cleus accumbens) and the Harvard-Oxford Cortical Atlas (IFG;
pars opercularis and pars triangularis) with a threshold for prob-
abilistic ROIs > 0 (Craddock et al., 2012). In the group-level
analyses targeting these two ROIs, we calculated two contrasts
that reflected our confirmatory hypotheses, separately for the in-
duction and relief phase. We hypothesized stronger activation
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in the ROIs when participants processed a negative cue/image
in the active-choice condition as compared to that same event
in the passive-viewing condition (i.e., (βneg|active − βneg|passive) >
0). In addition, we hypothesized stronger activation in the
ROIs when participants processed a negative cue/image in the
active-choice condition as compared to a positive cue/image
in the active-choice condition, controlling for passive viewing
(i.e., (βneg|active − βneg|active) − (βpos|active − βpos|passive) > 0).
For these confirmatory ROI analyses, we used nonparametric
permutation-based inference in combination with Threshold-
Free Cluster Enhancement (TFCE; Smith & Nichols, 2009)
as implemented in FSL randomise (Winkler et al., 2014) and
thresholded voxelwise results at p < 0.025 (correction for two
ROIs). Note that this analysis allows for voxel-wise inference
(i.e., no cluster-based correction is used). In addition to the
confirmatory ROI analysis, we conducted an exploratory whole-
brain group-level analysis. In addition to the two confirmatory
contrasts mentioned in the previous section, we tested three ex-
ploratory contrasts, separately for the induction and relief phase
with a voxel-wise p-value threshold of 0.005 and a cluster-wise
p-value of 0.05). Full details regarding the exploratory analyses
can be found in the Methods section.

5.2 Methods

Participants
Participants consisted of a convenience sample of students at
the University of Amsterdam. The study was approved by the
Ethics Review Board of the department of Psychology at the Uni-
versity of Amsterdam (2017-SP-7871) and performed in accor-
dance with relevant institutional guidelines. The budget allowed
for scanning of a maximum of 60 participants. After applying
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the exclusion criteria, the total sample consisted of 54 partici-
pants, including 38 women (Mage = 22.4, SD = 2.9) and 16 men
(Mage = 23.8, SD = 1.8).

Design
This study used a 2 (choice: active-choice vs. passive-viewing) ×
2 (phase: induction vs. relief) × 2 (valence: negative vs. positive)
mixed design. The variable choice was varied between partici-
pants and consisted of an active-choice condition and a passive-
viewing condition. The variable phase was varied within partic-
ipants and reflected the presentation of the cue (i.e., induction)
vs. the presentation of the image (i.e., relief). The variable va-
lence was varied within participants and reflected the negative
vs. positive content of the cues/images.

Materials
Experimental task

The present study utilized a choice task (Oosterwijk, 2017a) that
presented participants with verbal cues describing negative and
positive images, and offered them a choice to see these im-
ages or blurred versions. We used a yoked design that isolated
the effects of choice, controlling for general affective, seman-
tic and visual processing (see also Wood et al., 2015; Amat et
al., 2005). This yoked design resulted in two conditions: the
active-choice condition and the passive-viewing condition. Par-
ticipant in the passive-viewing condition did not make choices,
but were confronted with the choice profile of a yoked partici-
pant in the choice condition. Tasks in both conditions were pro-
grammed in Neurobs Presentation (https://www.neurobs.com/
presentation). Behavioral data preprocessing was done using
Python 3.5 and analyzed using IBM SPSS Statistics 22.0.
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In the active-choice condition, participants were presented
with 35 negative cues (e.g., rescue workers treat a wounded man;
a soldier kicks a civilian against his head) and 35 positive cues
(e.g., children throw flower petals at a wedding; partying peo-
ple carry a crowd surfer) that described images, in random or-
der. In each trial participants could choose, based on the cue,
whether they wanted to view the corresponding image or not.
The choice task consisted of a total of 70 trials. Each trial started
with a fixation cross, presented for 500 ms, followed by the cue,
presented for 3,000 ms. The presentation of the cue was labelled
as the induction phase (see also Jepma et al., 2012; Lieshout
et al., 2018). The cue was followed by a jittered interval vary-
ing between 500 and 2000 ms. Subsequently, participants saw
the words ‘yes’ and ‘no’ on the screen, and chose whether they
wanted to see the image that was described by the cue, or not, by
pressing one of two pre-specified buttons. Immediately follow-
ing their response, the word ‘yes’ or ‘no’ turned green, indicating
that their response was registered. Participants had a 2000 ms.
time window to make their choice. If they had not made a choice
after 2000 ms, the choice was automatically set to ‘no’. The re-
sponse phase was followed by a jittered interval varying between
500 and 2000 ms. The interval was followed by the relief phase,
in which the participants were presented with the image (1,024
× 768 pixels) when they chose ‘yes’. When participants chose
not to see the corresponding image, they were presented with a
blurred version of the image that was unrecognizably distorted
(filter). Images were blurred with the software IrfanView (ver-
sion 4.44; https://www.irfanview.com/) using the fast Gaussian
blur (filter = 150 pixels). Both the image and the blurred image
were presented for 3,000 ms. The relief phase was followed by a
jittered inter-trial-interval varying between 2000 and 4,000 ms.
For a visual representation of the paradigm, please see Figure
5.1.

In the passive-viewing condition, participants were pre-
sented with the choice profile of a participant in the active-
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choice condition (i.e., the exact pattern of ‘yes’ and ‘no’ re-
sponses to the positive and negative cues for each participant
in the active-choice condition was saved, and then re-used once
as the computer generated pre-determined choice pattern for a
participant in the passive-viewing condition). Participants were
told in the introduction to the study that the computer would
determine which images would be shown. The trial setup was
identical to the active-choice condition, except for the following
aspect. After participants were presented with the cue, the word
‘yes’ or ‘no’ turned green, indicating the choice of the computer.
Participants were asked to confirm the choice made by the com-
puter by pressing one of two pre-specified buttons, to mirror the
motor response made in the active-choice condition.

The active-choice condition came with a filling problem: be-
cause participants could choose whether they wanted to view an
image or not, some participants would see many more images
than others. This filling problem can pose problems for mod-
elling the BOLD response, due to lower efficiency in estimating
contrasts for one subject over the other. Based on individual dif-
ferences in choosing to view social negative information (Oost-
erwijk, 2017a), we formulated an a-priori defined and prereg-
istered eligibility criterion that only participants in the active-
choice condition who chose negative and/or positive images in
40% or more of the trials (14/35 stimuli) would be paired with
a subject in the passive-viewing condition. Based on this cri-
terion five out of 33 participants in the active-choice condition
were excluded from the sample. One other participant was ex-
cluded, because the functional scan was stopped prematurely.
This resulted in 27 participants in the active-choice condition.
The choice profiles of these 27 participants were yoked with 27
participants in the passive-viewing condition.
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Cues

Cues were written to describe positive and negative images in
one sentence. In a pilot study the cues were rated on valence (0
= negative to 100 = positive), and arousal (0 = low arousal to 100
= high arousal). Negative cues were rated more negatively than
positive cues (M = 20.69, SD = 8.42 vs. M = 77.99, SD = 4.49),
t(68) = −35.51, p < 0.001, and more arousing than positive cues
(M = 68.45, SD = 6.38 vs. M = 28.93, SD = 5.99), t(68) = 26.71,
p < 0.001. Negative and positive cues were matched in terms of
valence extremity. An analysis of mean-centered valence scores
demonstrated that, on average, positive cues were perceived as
equally positive (M = 29.31, SD = 8.43) as negative stimuli were
perceived as negative (M = 27.99, SD = 4.49), t(68) = 0.82, p =
0.417.

Images

Images were selected from the International Affective Picture
System (IAPS; Lang et al., 1997) and the Nencki Affective Pic-
ture System (NAPS; Marchewka et al., 2014); image codes are
presented in the Supplementary Materials (Table D.4). We se-
lected negative images that portrayed situations of interpersonal
violence, or social scenes involving a dead body or a harmed per-
son. Negative images were selected when they had a valence rat-
ing below 4 (on a scale from 1 = negative to 9 = positive) and an
arousal rating above 4.5 (on a scale from 1 = not arousing to 9 =
extremely arousing). We selected positive images that portrayed
joyful, loving or exciting interpersonal interactions. Positive im-
ages were selected when they had a valence rating above 6 (on
a scale from 1 = negative to 9 = positive) and an arousal rating
above 3 (on a scale from 1 = not arousing to 9 = extremely arous-
ing). Negative and positive images differed significantly in terms
of valence (M = 2.58, SD = 0.53 vs. M = 7.43, SD = 0.36), t(68)
= −44.88, p < 0.001, and arousal (M = 6.18, SD = 0.75 vs. M =
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4.78, SD = 0.90), t(68) = 7.07, p < 0.001. Negative and positive
images were matched in terms of valence extremity. An analysis
of mean-centered valence scores demonstrated that, on average,
positive images were perceived as equally positive (M = 2.42, SD
= 0.53) as negative stimuli were perceived as negative (M = 2.44,
SD = 0.37), t(68) = − 0.22, p = 0.824.

Questionnaires

After the scanning session was completed, participants filled in
the ‘Morbid curiosity in daily-life’ questionnaire (Oosterwijk,
2017a) and the Dutch version of the Interpersonal Reactivity In-
dex (De Corte et al., 2007). A short exit questionnaire asked par-
ticipants two questions regarding the task they performed in the
scanner. Participants in the active-choice condition were asked
to rate to what extent they followed their curiosity when making
choices for negative cues, and when making choices for positive
cues, on a 1 (not at all) to 7 (very much) point scale. Participants
in the passive-viewing condition were asked to rate to what ex-
tent they were curious about the negative cues, and the positive
cues, on a 1 (not at all) to 7 (very much) point scale. The exit
questionnaire concluded with demographic questions.

Procedure
After signing the informed consent form, each participant re-
ceived a thorough instruction. The active-choice condition was
introduced as a study on how the brain represents choice. Par-
ticipants were explained how they could make their choice, that
they would always see the image of their choice, and that there
were no right or wrong answers. Furthermore, participants were
presented with an example of a negative and a positive cue,
combined with the corresponding full image and blurred im-
age, so that they knew what to expect when choosing the yes or
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no option. No mention was made of curiosity in the instruc-
tion. The passive-viewing condition was introduced as a study
on the brain processes involved in reading image descriptions
and viewing images. Participants were explained that the com-
puter determined whether a description would be followed by a
corresponding image. As in the active-choice condition, par-
ticipants were presented with an example of a negative and a
positive cue, combined with the corresponding full image and
blurred image, so that they knew what to expect when the com-
puter determined the yes or no option.

When comfortable and instructed, a structural T1-weighted
anatomical scan was made. Then the participant performed the
choice task or the passive task during fMRI acquisition in the
scanner. After the scanning session, the participant filled in the
questionnaires and received a thorough debriefing.

Behavioral analysis
In the active-choice condition, we compared the extent to which
participants followed their curiosity when making choices for
negative cues and positive cues. In the passive-viewing condi-
tion, we compared the extent to which participants were curious
about negative cues and positive cues. For the active-choice con-
dition, a Kolmogorov–Smirnov test indicated a normality viola-
tion (active-choice: skewness = 0.640, kurtosis = − 0.375, D(25)
= 0.197, p = 0.013; passive-viewing: skewness = − 0.399, kurto-
sis = − 0.055, D(27) = 0.161, p = 0.071). We report two paired
sample t-tests (two-tailed) to analyze the difference between
cues, but results were fully corroborated with non-parametric
Wilcoxon signed-rank tests. Effect sizes (Cohen’s dz) were cal-
culated using Lakens’ (Lakens, 2013) spreadsheet.
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Imaging details
Image acquisition

Participants were tested using a Philips Achieva 3T MRI scanner
and a 32-channel SENSE headcoil. A survey scan was made for
spatial planning of the subsequent scans. Following the survey
scan, a 3-min structural T1-weighted scan was acquired using
3D fast field echo (TR: 82 ms, TE: 38 ms, flip angle: 8°, FOV:
240 × 188 mm, in-plane resolution 240 × 188, 220 slices ac-
quired using single-shot ascending slice order and a voxel size
of 1.0 × 1.0 × 1.0 mm). After the T1-weighted scan, functional
T2*-weighted sequences were acquired using single shot gradi-
ent echo, echo planar imaging (TR = 2000 ms, TE = 27.63 ms,
flip angle: 76.1°, FOV: 240 × 240 mm, in-plane resolution 64 ×
64, 37 slices with ascending acquisition, slice thickness 3 mm,
slice gap 0.3 mm, voxel size 3 × 3 × 3 mm), covering the entire
brain. For the functional run, 495 volumes were acquired. Af-
ter the functional run, a “B0” fieldmap scan (based on the phase
difference between two consecutive echos) was acquired using
3D fast field echo (TR: 11 ms, TE: 3 ms and 8 ms, flip angle: 8°,
FOV: 256 × 208, in-plane resolution 128 × 104, 128 slices).

Preprocessing

Results included in this manuscript come from preprocess-
ing performed using FMRIPREP version 1.0.0 (O. Esteban,
Markiewicz, Blair, Moodie, Isik, Erramuzpe, Kent, Goncalves,
DuPre, Snyder, & others, 2019; O. Esteban, Blair, et al.,
2017), a Nipype (Gorgolewski et al., 2011, 2017) based tool.
Each T1 weighted volume was corrected for bias field using
N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and skull-
stripped using antsBrainExtraction.sh v2.1.0 (using OASIS tem-
plate). Cortical surface was estimated using FreeSurfer v6.0.0
(Dale et al., 1999). The skullstripped T1w volume was seg-
mented (using FSL FAST; Zhang et al., 2001) and coregistered to
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the skullstripped ICBM 152 Nonlinear Asymmetrical template
version 2009c (Fonov et al., 2009) using nonlinear transforma-
tion implemented in ANTs v2.1.0 (Avants et al., 2008).

Functional data was motion corrected using MCFLIRT
v5.0.9 (Jenkinson et al., 2002). Distortion correction was per-
formed using phase-difference fieldmaps processed with FSL
FUGUE (Jenkinson, 2003). This was followed by co-registration
to the corresponding T1w using boundary-based registration
(Greve & Fischl, 2009) with 9 degrees of freedom, using bbregis-
ter (FreeSurfer v6.0.0). Motion correcting transformations, field
distortion correcting warp, BOLD-to-T1w transformation and
T1w-to-template (MNI) warp were concatenated and applied
in a single step using antsApplyTransforms (ANTs v2.1.0) using
Lanczos interpolation.

Many internal operations of FMRIPREP use nilearn (Abra-
ham et al., 2014), principally within the BOLD-processing work-
flow. For more details of the pipeline see https://fmriprep.
readthedocs.io/en/1.0.0/workflows.html.

First-level analysis

We modeled the participants’ preprocessed time series in a “first-
level” GLM using FSL FEAT (Woolrich et al., 2001). The first-
level modeling procedure was exactly the same for the partic-
ipants in the active choice and passive viewing condition. As
predictors, we included regressors for both the induction phase
(i.e., the written description) and the relief phase (i.e., the full
image). We separated trials with positive descriptions/images
from trials with negative descriptions/images and separated tri-
als in which participants saw the full version of the image from
trials in which they saw a blurred version of the image. Note
that in the active choice condition participants chose to see the
full or blurred image, whereas in the passive viewing condition it
was predetermined whether participants saw the full or blurred
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image. The final model held six predictors: 2 (phase: induction
vs. relief) × 2 (valence: negative vs. positive) × 2 (seen: full image
vs. blurred image). If participants did not have any blurred im-
age trials, the associated predictors were left out. Additionally,
we added a single predictor for the actual decision (i.e., modelled
at the onset the button press) and six motion predictors based on
the estimated motion correction parameters.

Before model estimation, we applied a high-pass filter (σ =
50 s) and spatially smoothed the data (FWHM = 5 mm.). Stan-
dard prewhitening, as implemented in FSL, was applied. First-
level contrasts only involved predictors associated with full im-
age trials; that is, predictors associated with blurred image tri-
als were not used for further analysis. For the remaining four
predictors of interest — 2 (phase | full image) × 2 (valence | full
image) — we defined contrasts against baseline, i.e.,βpredictor ̸= 0
and valence contrasts, i.e., (βneg|induction − βpos|induction) ̸= 0 and
(βneg|relief − βpos|relief) ̸= 0. The results (images with parame-
ter and variance estimates) were subsequently registered to FSL’s
default template (“MNI152NLin6Asym”) using a translation-
only (3 parameter) affine transform using FSL Flirt (which is
part of FSL FEAT) for group analysis.

ROI-based group analysis

We tested two confirmatory hypotheses in this ROI-based group
analysis, separately for the induction and relief phase:

1. (βneg|active − βneg|passive) > 0
2. (βneg|active − βneg|passive) − (βpos|active − βpos|passive) > 0

Note that the parameters (e.g., βneg|active) reflect the average
of the first-level parameters (e.g., βneg) for a particular condition
(e.g., active choice). As such, we tested four different group-level
contrasts — 2 (phase) × 2 (hypothesis) — across two ROIs (stria-
tum and IFG) in our group-level model.
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For these confirmatory ROI-based group analyses, we used
nonparametric permutation-based inference in combination
with Threshold-Free Cluster Enhancement (TFCE; Smith &
Nichols, 2009) as implemented in FSL randomise (Winkler et al.,
2014). We ran randomise with 5,000 permutations, corrected for
multiple comparisons using the maximum statistic method (the
method’s default multiple comparison correction procedure),
and thresholded voxelwise results at p < 0.025 (correction for
two ROIs). Note that this analysis allows for voxel-wise infer-
ence (i.e., no cluster-based correction is used).

In these ROI-based analyses, we restricted the analysis to
voxels within two a-priori specified ROIs: bilateral striatum and
bilateral inferior frontal gyrus (IFG). The ROIs are based on the
Harvard–Oxford Subcortical Atlas (striatum; caudate, putamen
and nucleus accumbens) and the Harvard–Oxford Cortical At-
las (IFG; pars opercularis and pars triangularis) with a threshold
for probabilistic ROIs > 0 (Craddock et al., 2012).

Whole-brain group analysis. In addition to the confirmatory
ROI-based analysis, we conducted an exploratory whole-brain
group-analysis. Besides the two hypotheses mentioned in the
previous section, we tested the following hypotheses, again for
both the induction and relief phase:

3. (βpos|active − βpos|passive) > 0
4. (βpos|active − βpos|passive) − (βneg|active − βneg|passive) > 0
5. (βneg|active − βneg|passive) ∩ (βpos|active − βpos|passive)

The ∩ symbol in hypothesis 5 represents a conjunction anal-
ysis between two contrasts. For these exploratory whole-brain
group analyses, we used FSL FEAT (Woolrich et al., 2004) with
a FLAME1 mixed-effects model and automatic outlier detection
(Woolrich, 2008). Resulting brain maps were thresholded with
cluster-based correction (Worsley, 2001) using an initial (one-
tailed) voxel-wise p-value cutoff of 0.005 (corresponding to a z-
value above 2.576) and a cluster-wise significance level of 0.05.
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For the conjunction analysis (hypothesis 5), we used the min-
imum statistic approach (Nichols et al., 2005) in combination
with cluster-based correction using the same cutoff and signif-
icance value as for the other two (non-conjunction based) hy-
potheses.

Further exploratory analyses

To aid interpretation of the results, we “decoded” the brain
maps resulting from the whole-brain analysis using Neurosynth
(Yarkoni et al., 2011). In Supplementary Table D.1, we list the
ten Neurosynth terms (excluding anatomical terms) with the
highest overall spatial correlation with our unthresholded brain
maps (which are available on Neurovault, see Data availability).

Data availability
All code used to preprocess, analyze, and plot the data is
available from the project’s Github repository: https://github.
com/lukassnoek/MorbidCuriosityFMRI. Much of this study’s
code involves functionality from the nilearn Python package
for neuroimaging analysis and visualization (https://nilearn.
github.io/ Abraham et al., 2014). Unthresholded whole-brain
group-level statistics maps are available from Neurovault (Gor-
golewski, Varoquaux, Rivera, Schwarz, Ghosh, Maumet, Sochat,
Nichols, Poldrack, Poline, & others, 2015): https://identifiers.
org/neurovault.collection:5591. This repository contains whole-
brain z-value maps for all possible contrasts across phases (in-
duction vs. relief, referred to as “cue” and “stim”), valence (pos-
itive vs. negative, referred to as “pos” and “neg”), and group (ac-
tive vs. passive, referred to as “act” vs. “pas”). For example, on
Neurovault, the map associated with the (βneg|active−βneg|passive)−
(βpos|active − βpos|passive) > 0 contrast in the induction phase is
named “cue-posneg_contrast-act-pas”.
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5.3 Results

Participants
In total, sixty participants signed informed consent and under-
went our scanning protocol. We implemented a preregistered
eligibility criterion that only participants who chose negative
and/or positive images in 40% or more of the trials would be
paired with a participant in the passive-viewing condition. Neu-
roimaging analyses were performed on a sample of 54 partici-
pants (38 women; Mage = 22.4, SDage = 2.9); with 27 participants
in the active-choice condition and 27 participants in the passive-
viewing condition.

Behavior and subjective report
In the active-choice condition, participants chose to view the
negative image in 80.6% of the trials; participants chose to view
the positive image in 94.8% of the trials. In the active-choice
condition, participants reported that they followed their curios-
ity more when making choices for negative cues (M = 6.20, SD =
0.71) as compared to positive cues (M = 4.72, SD = 1.82), t(24) =
3.49, p = 0.002, 95% CI [0.60, 2.36], dz = 0.70. Similarly, partic-
ipants expressed more curiosity for negative cues (M = 5.41, SD
= 1.28) than for positive cues (M = 4.44, SD = 1.60), t(26) = 2.42,
p = 0.023, 95% CI [0.15, 1.78], dz = 0.47, in the passive-viewing
condition. This finding is consistent with previous results that
people find negative social information generally more interest-
ing than positive social information (Oosterwijk, 2017a).

ROI analyses
Our first set of hypotheses focused on contrasting neural activity
when participants processed a negative cue in the active-choice
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Figure 5.2 Results of confirmatory ROI analyses for the induction phase
(A) the contrast negativeactive>passive (B) the contrast negativeactive>passive >
positiveactive>passive. Voxels in red/yellow represent significant t-values (p <
0.05, corrected for multiple comparisons using the maximum statistic ap-
proach). The colored outlines represent the different brain regions within
the probabilistic ROIs for the striatum (left) and inferior frontal gyrus (IFG;
right). The outlines represent the border of the ROIs thresholded at 0. When
voxels within one ROI had a nonzero probability in more than one brain re-
gion (e.g., the caudate and nucleus accumbens), the voxel was assigned
to the brain region with the largest probability.

condition with that same event in the passive-viewing condition
(i.e., negativeactive>passive). As predicted, a confirmatory ROI anal-
ysis demonstrated more activation in the striatum when par-
ticipants viewed a negative cue that was chosen (in the active-
choice condition) as compared to watching that same negative
cue in the passive-viewing condition. Figure 5.2 shows that this
contrast produced significant voxels across the striatum, in the
caudate, putamen and NAcc. The ROI analysis targeting the
IFG also demonstrated stronger activation in the active-choice
condition as compared to the passive-viewing condition, further
confirming our hypotheses.
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Our second set of hypotheses focused on comparing a choice
for negative information with a choice for positive information,
controlling for general semantic, affective and visual process-
ing (i.e., negativeactive>passive > positiveactive>passive). As predicted,
a confirmatory ROI analysis demonstrated more activation in
the striatum when participants viewed a negative cue that was
chosen as compared to a positive cue that was chosen, relative
to watching that same negative or positive cue in the passive-
viewing condition. Again, significant voxels were found across
the striatum, in the caudate, putamen and NAcc. A similar ef-
fect was found in the IFG (see Figure 5.2). To explore the direc-
tionality of the effects, we extracted the parameter weights (β̂)
for the individual regressors for both ROIs. A visual inspection
of plotted weights suggest that the patterns of neural activation
reported for the striatum, are driven both by activation in the
striatum when viewing negative cues in the active-choice con-
dition, and deactivation in the striatum when viewing negative
cues in the passive-viewing condition. Further details can be
found in Figure D.1 of the Supplementary Materials.

Whole-brain analyses
In addition to the confirmatory analyses reported above, we
performed a whole-brain analysis (cluster-corrected with a
voxel-wise threshold of p < 0.005 and a cluster-wise thresh-
old of p < 0.05) for the two confirmatory contrasts (see Fig-
ure 5.3). In addition to activation in the regions targeted in
the confirmatory ROI analyses, the whole-brain analyses for the
negativeactive>passive contrast demonstrated robust activation in
the ACC, paracingulate gyrus, superior frontal gyrus, middle
frontal gyrus, OFC, insular cortex, frontal operculum, frontal
pole, temporal pole, thalamus and brain stem, when partici-
pants viewed a negative cue that was chosen (in the active-choice
condition) as compared to watching that same negative cue in
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Figure 5.3 Results of the exploratory whole-brain analyses for
the induction phase: (A) the contrast negativeactive>passive (red),
positiveactive>passive (blue), and their conjunction (yellow); (B) the
contrast negativeactive>passive > positiveactive>passive; (C) the contrast
positiveactive>passive > negativeactive>passive (empty).

the passive-viewing condition. A complete table of the signifi-
cant clusters can be found in the Supplementary Materials (Ta-
ble D.2, as well as the significant clusters associated with the
positiveactive>passive contrast, Table D.3). The whole-brain results
for the negativeactive>passive > positiveactive>passive contrast are pre-
sented in Table 5.1. This contrast demonstrated stronger acti-
vation in the ACC, paracingulate gyrus, superior frontal gyrus,
OFC, insular cortex and frontal operculum, when participants
viewed a negative cue that was chosen as compared to a positive
cue that was chosen (relative to watching that same negative or
positive cue in the passive-viewing condition).
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Table 5.1 Cluster statistics and associated brain regions from the ex-
ploratory whole-brain analysis.

Cluster
nr

Cluster
size

Cluster
max

X Y Z Region K Max

1 3158 4.82 − 8 30 24 Left paracingulate gyrus 831 4.58

Right paracingulate gyrus 741 4.70

Left superior frontal gyrus 657 4.64

Right cingulate gyrus, anterior
division

317 4.42

Left cingulate gyrus, anterior
division

300 4.82

Right superior frontal gyrus 201 3.94

Left juxtapositional lobule cortex 76 3.27

2 1928 4.84 − 42 20 4 Left frontal orbital cortex 602 4.64

Left insular cortex 234 4.17

Left inferior frontal gyrus, pars
triangularis

229 4.17

Left frontal operculum cortex 205 4.84

Left inferior frontal gyrus, pars
opercularis

93 3.65

Left temporal pole 57 4.31

Left subcallosal cortex 29 3.22

Left caudate 121 3.48

Left Putamen 110 3.86

Left thalamus 48 3.84

Left accumbens 39 3.52

3 692 4.64 36 24 -
16

Right frontal orbital cortex 443 4.64

Right insular cortex 79 3.80
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Right frontal operculum cortex 70 3.39

Right temporal pole 44 3.40

Right inferior frontal gyrus, pars
triangularis

30 3.27

4 464 4.74 10 14 4 Right caudate 265 4.74

Right putamen 26 3.49

5 296 3.81 − 36 12 26 Left middle frontal gyrus 111 3.72

Left inferior frontal gyrus, pars
opercularis

111 3.81

Left precentral gyrus 64 3.46

Note: The X, Y, and Z coordinates refer to MNI152 (2 mm) space. The regions
are taken from the Harvard–Oxford (sub)cortical atlas and voxels are assigned to
regions based on their maximum probability across all ROIs within the atlas. *K*
refers to the number of voxels within a particular region.

To further interpret the whole brain results, we used the “de-
coder” function from Neurosynth (Yarkoni et al., 2011) to find
key terms associated with particular patterns of neural activa-
tion. The neural pattern produced by the negativeactive>passive >
positiveactive>passive contrast resulted in the following key terms
(top-10): reward, task, monetary, semantic, anticipation, incen-
tive, demands, fear, autobiographical, retrieval (see Supplemen-
tary Materials, Table D.1). Although it is important to be care-
ful with drawing reverse inference conclusions about the psy-
chological meaning of neural activation (Poldrack, 2006), these
terms at minimum suggest that the neural pattern associated
with choosing negative content (relative to choosing positive
content and passive-viewing) is similar to neural patterns asso-
ciated with reward and the processing of extrinsic incentives.

It is important to note that none of the confirmatory ROI
analyses nor any of our exploratory analyses showed significant
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differences in the relief phase (i.e., when viewing the image).
This is in line with previous work on curiosity (Gruber et al.,
2014) that found robust neural activation when inducing curios-
ity (e.g., presentation of trivia questions), but not when reliev-
ing curiosity (e.g., presentation of trivia answers). Other work
on curiosity, that did find differences in the relief phase, con-
trasted a condition in which curiosity was relieved, with a condi-
tion that withheld information (Lieshout et al., 2018) or a condi-
tion that showed irrelevant information (Jepma et al., 2012). In
the present study, however, we contrasted the relief phase in the
active-choice condition with viewing the exact same informa-
tion in the passive-viewing condition. Since we found that par-
ticipants in the passive-viewing condition also reported a rea-
sonable amount of curiosity in response to the cue, curiosity re-
lief may have occurred in both the active-choice and the passive-
viewing condition.

5.4 Discussion
In the last decade, neuroscientific research has made a major
contribution to a better understanding of choice, value and cu-
riosity. Most of this work, however, has focused on extrinsi-
cally rewarding information (Bartra et al., 2013; Braver et al.,
2014), or on an intrinsically-motivated curiosity for neutral or
positive information (e.g., Gruber & Ranganath, 2019; Kang et
al., 2009; Lieshout et al., 2018). The present study demonstrates
that choosing intensely negative stimuli engages similar brain re-
gions as those that support extrinsic incentives and regular cu-
riosity (Bartra et al., 2013; Diekhof et al., 2012; Gruber & Ran-
ganath, 2019; Kidd & Hayden, 2015; Sakaki et al., 2018). We
found that a deliberate choice for death, violence or harm is
associated with activation in the striatum (NAcc, caudate and
putamen), inferior frontal gyrus, anterior insula, orbitofrontal
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cortex and anterior cingulate cortex. This pattern was present
both when we contrasted negative cues (that were chosen) with
passively viewing these cues, and when we contrasted negative
cues (that were chosen) with positive cues (that were chosen),
controlling for passive viewing. These findings reflect the in-
duction phase in which participants anticipated on their choice;
we found no differences in the relief phase in which participants
viewed images.

Although we found activation in regions associated with re-
ward and incentives, it is important to be careful with the con-
clusion that it is “rewarding” to choose negative information
(Poldrack, 2006). Reward regions are associated with a mul-
titude of psychological processes (Bartra et al., 2013), and re-
ward is a construct with different dissociable dimensions, in-
cluding “liking” and “wanting” (e.g., Berridge et al., 2009; We-
ber et al., 2018). In addition, the distributed pattern of activa-
tion that we found most likely reflects psychological processes
beyond reward as well. In the next section, we address several,
non-mutually exclusive, interpretations of this distributed pat-
tern, including an interpretation regarding the potential reward
value of negativity, the possibility that this neural pattern reflects
uncertainty, and an interpretation that considers the particular
characteristics of the task.

Golman & Loewenstein (2015) propose that a desire to ob-
tain information can be driven by a motive to make better de-
cisions, a motive to experience pleasantness, or a motive to en-
gage with information “for its own sake” (p. 3). The negative
choices made by our participants are most likely consistent with
the latter intrinsic motive. Participants chose images that were
not hedonically pleasing and, in contrast to other recent (neuro-
scientific) studies targeting curiosity (e.g., Lieshout et al., 2018;
Kobayashi et al., 2019), there was no monetary outcome associ-
ated with choosing (negative) images. The question that follows
then is: what is the value of negativity?
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One possibility is that knowledge acquisition is inherently
valuable (Marvin & Shohamy, 2016; Murayama et al., 2019),
even when people acquire knowledge about negative social situ-
ations that involve death, violence or harm. Indeed, the knowl-
edge update that follows from engaging with negative informa-
tion might be valuable for building a realistic model of the world
(Baumeister et al., 2001) or for dealing with future aversive situ-
ations. Applying this interpretation to our findings, we propose
that the brain predicts a larger information gain in the negative
choice condition than in the positive choice condition. This is
reflected in stronger activation of reward circuitry (e.g., NAcc,
caudate, putamen) that might track the expected value of knowl-
edge acquisition (Murayama et al., 2019), or the salience of the
information (Bartra et al., 2013). Note that we focus here on
the informational value of valenced stimuli in epistemic terms
(Berlyne, 1966; Litman, 2005; Loewenstein, 1994; Murayama et
al., 2019), but the value of choosing to engage with negative or
positive stimuli may also lie in the emotional experiences or sen-
sations that are evoked by the stimulus (Zuckerman, 1979; Zuck-
erman & Litle, 1986; see for an overview Tamir, 2016).

Another possible explanation for the present findings lies in
the momentary uncertainty that people may experience when
viewing negative cues (e.g., How extreme will the image be?),
in combination with the predicted reduction of this uncertainty
when choosing to view images. Curiosity is often seen as a desire
to resolve uncertainty (Berlyne, 1966; Gottlieb & Oudeyer, 2018;
Loewenstein, 1994) and several recent studies have demon-
strated that people experience higher levels of curiosity for un-
certain stimuli (Kobayashi et al., 2019; Lieshout et al., 2018).
People even engage with aversive stimuli to reduce uncertainty,
preferring a reduction in uncertainty above a negative outcome
(Hsee & Ruan, 2016). Neuroscience studies have shown that un-
certainty is associated with activation in the OFC, ACC and an-
terior insula (Bach & Dolan, 2012; Harris et al., 2008; Singer et
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al., 2009), regions we also found to be active in the active-choice
condition. Moreover, we found that the OFC, ACC and ante-
rior insula were more strongly engaged when viewing chosen
negative cues, as compared to chosen positive cues. The neural
pattern found in the negative choice condition (as compared to
the positive choice condition) may thus reflect a higher level of
outcome uncertainty, and/or a stronger expected reduction in
uncertainty, in interaction with, or irrespective of (Harris et al.,
2008), the reward value of the information.

A final interpretation of the present findings revolves around
the demands of the task that people performed in the choice-
condition. Deciding how to respond to a negative cue may be
an engaging and effortful task, that requires careful weighing of
options. Several perspectives suggests that the IFG and ACC
may support such processes. In a recent framework, Gruber
et al. (2014) propose that curiosity involves an appraisal pro-
cess, supported by the IFG, that determines one’s ability to deal
with information (see also Silvia, 2008). Notably, they predict
enhanced involvement of the IFG in situations that involve a
dilemma in which people have to choose between approaching
or avoiding information. Other authors have suggested that the
dACC may be particularly active in effortful or exploratory tasks
that demand cognitive control, as compared to tasks that can be
performed by engaging in automatic behavior (Shenhav et al.,
2016). When applying these perspectives to the current find-
ings, stronger ACC and/or IFG activation for negative choice
as opposed to passive viewing may reflect the specific cogni-
tive demands (e.g., appraisal, weighing options, effort) of the
active-choice condition relative to the passive-viewing condi-
tion. Furthermore, stronger ACC and/or IFG activation for neg-
ative choice as opposed to positive choice may reflect the rel-
atively complex cost–benefit analysis that precedes a choice to
choose a negative stimulus, as compared to the relatively auto-
matic or “default” decision to choose a positive stimulus. This
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interpretation is consistent with the characterization of “morbid
curiosity” as a conflict state, in which people “want” information
that they do not “like” (Litman, 2005; Rimé et al., 2005).

The present study has a few limitations that we should ad-
dress. First of all, all contrasts calculated in the present study
are relative to the passive-viewing condition (as preregistered).
We deliberately made this decision, because we wanted to isolate
the neural activation associated with a deliberate choice to view a
stimulus. More specifically, in a direct contrast between chosen
negative cues and chosen positive cues, it would have been im-
possible to know whether the pattern of neural activation was
driven by choosing negative versus positive information, or by
simply viewing negative versus positive cues. The yoked pro-
cedure, and the resulting contrasts, control for the latter, since
activation associated with viewing negative versus positive cues
is subtracted out. Furthermore, confronting participants with
emotional material that they cannot control, is common prac-
tice when scientists study affective/emotional experience (Lang
& Bradley, 2010; Lindquist et al., 2016) and emotion regula-
tion (Buhle et al., 2014; Wager et al., 2008), and thus serves as
a meaningful control condition. Nevertheless, it is important
to note that our results in the striatum were partly driven by
deactivation in the passive viewing condition (see Figure D.1,
Supplementary Materials). Since this pattern of deactivation
was not predicted in our preregistered analysis protocol, and
our study was not designed for optimal detection of directional
effects, we will not discuss this finding further. A design that
contrasts choosing versus passive viewing within-subjects may
clarify whether explicitly anticipating a negative outcome that
cannot be controlled indeed deactivates the striatum.

Second, the present design does not allow for a contrast be-
tween agreeing to view an image and refusing to view an image,
because participants said “yes” to the cue in the vast majority of
the trials (i.e., 81% for negative cues; 95% for positive cues). As
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a future direction, it may be insightful to develop a design that
artificially balances yes and no responses within the same par-
ticipant to investigate differences in reward circuitry between
approaching and avoiding negative information. In the present
study, however, we deliberately chose not to restrict or disregard
participant’s choices, because we wanted to keep the decision
process as natural as possible. Having said that, a fMRI scan-
ner is a relatively boring environment, and previous research has
shown that boredom prompts people to seek out novel experi-
ences (Bench & Lench, 2019). Thus, the scanning environment
may have stimulated participants to say yes more often (across
both conditions) than they would have done in other settings.

A third limitation is that we cannot rule out the possibility
that arousal contributes to our findings when contrasting neg-
ative and positive cues. Although we matched the social nega-
tive and positive cues (and images) in terms of valence extrem-
ity (i.e., positive cues were perceived as equally positive as nega-
tive cues were perceived as negative), the cues (and images) were
not matched in terms of arousal. We accepted the difference in
arousal as a consequence of the content criterion for negative
images (i.e., displaying death, violence or harm within a social
context), and our deliberate choice not to include erotic images,
considering the practical considerations associated with erotic
content (Wierzba et al., 2015). It is important to note that in the
negative choice vs. passive-viewing contrast the effect of viewing
an arousing cue is subtracted out. The negative choice vs. pos-
itive choice contrast, however, does not control for the net dif-
ference between the arousing quality of the negative and positive
cues. Therefore, it is possible that the pattern of neural activa-
tion when comparing negative vs. positive choice, in particular
in the ACC and insula (Citron et al., 2014; Satpute et al., 2019),
reflects, to some extent, the higher arousal value of the negative
vs. positive verbal cues.
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A fourth and final limitation is that the present study focused
on behavior, without incorporating trial-by-trial ratings of cu-
riosity. This restricts the extent to which the present findings
speak to the subjective experience of curiosity. In regular curios-
ity, for example when processing trivia questions, there are little
costs associated with acting on curiosity, and thus it may be suf-
ficient to focus on subjective ratings of curiosity. With morbid
curiosity, however, the stakes are higher. Although people can
experience curiosity for a negative stimulus without choosing to
engage with it, behavior is, in our opinion, the most straightfor-
ward indicator of how the conflict state of morbid curiosity is re-
solved. In other words, only when people choose to engage with
negative information can we deduce that the predicted benefits
(e.g., knowledge acquisition, uncertainty reduction) outweigh
the predicted costs of engaging with the information (e.g., not
being able to cope with the content). Furthermore, a focus on
choice connects to the many behavioral expressions of this phe-
nomenon in the real world (e.g., “rubbernecking” on the free-
way; clicking on a social media link). Future research should in-
vestigate whether the subjective experience of curiosity for neg-
ative stimuli is associated with a similar neural pattern (e.g., re-
ward circuitry, ACC, insula, OFC) as the pattern found with the
present choice paradigm.

Despite the questions that the present study provokes, our
findings represent an important step in nuancing models of
decision-making, valuation and curiosity. In light of the ubiq-
uity of exploring negativity in daily life, we believe that it is cru-
cial to start thinking about the value of seeking out negative con-
tent.

197



Chapter 6

Explainable models of facial
movements predict emotion

perception behavior
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Abstract Since Darwin, many studies have proposed how
action units (AUs) relate to categorical emotions, giving rise to
a multitude of hypothesized AU-emotion mappings. The quali-
tative nature of these mappings prevent us from quantifying to
what extent these AU-based mappings explain categorical emo-
tions. Here, we formalize these qualitative mappings as quan-
titative, predictive models that are able to precisely quantify
the importance and limitations of AUs for emotion perception.
We use a state-of-the-art modelling approach to compare these
models in their capacity to predict human emotion classification
behavior, explain the role of each AU, and explore how models
can be improved. Additionally, by estimating the noise ceiling of
predictive models, we estimate the limitations of these AU-based
models due to individual differences. Together, our approach
enables rigorous testing of different models, which quantifies the
importance and limitations of AU-based models and proposes
how to proceed in building better models of emotion perception.
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6.1. Introduction

6.1 Introduction
Facial expressions are a powerful and efficient medium to ex-
press and transmit a wide variety of emotions (Jack & Schyns,
2015). Since the pioneering work of Ekman and Friesen (Ek-
man & Friesen, 1976; Friesen & Ekman, 1978), studies have at-
tempted to describe and quantify the relationship between facial
expressions and emotions. Central to this endeavor are “action
units” (AUs) — the smallest visually discriminable movements
of the face (J. F. Cohn et al., 2007). Many studies have proposed
that specific combinations of AUs represent different categori-
cal emotions (Barrett et al., 2019; Matsumoto et al., 2008). For
example, Friesen & Ekman (1978) proposed that the facial ex-
pression of anger comprises Brow Lowerer (AU4), Upper Lid
Raiser (AU5), Lid Tightener (AU7), and Lip Tightener (AU23).
Such mappings between combinations of AUs and emotions are
supposedly largely invariant to individual differences (Ekman
& Keltner, 1997; Izard, 1994; Matsumoto et al., 2008), implying
that facial expressions conforming to the hypothesized AU com-
bination will be consistently interpreted as the associated emo-
tion. However, the importance of AUs in emotion perception
and the invariance of the AU-emotion mappings is still debated
(Barrett et al., 2019; Jack et al., 2012, 2009).

The prediction-explanation-exploration
framework
To compare different combinations of AUs in relation to cate-
gorical perception of emotions, one would need to directly and
quantitatively compare the mappings hypothesized in different
theories. In mature scientific endeavors, evaluating and com-
paring hypotheses is done using formal models, which can be
quantitatively assessed by how accurately they are able to pre-
dict phenomena. In addition, models are used to explain the un-
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derlying causes of phenomena, and, with the enhanced under-
standing these explanations can provide, allow us to explore new
predictions about the phenomenon (see Figure 6.1). Most AU-
emotion mappings, however, are not based or estimated from
an explicit model, but are based on statistical tests between sin-
gle AUs and discrete emotions (Cordaro et al., 2018; Ekman
et al., 1980; Jack et al., 2012; Wiggers, 1982). The result de-
scribes a hypothesized relationship between a combination of
AUs and a categorical emotion, which requires further develop-
ments to become formally predictive. We address this develop-
ment with a novel methodology that formalizes descriptive hy-
potheses, such as AU-emotion mappings, as predictive models
of classification (see Methods). To evaluate these formal models,
we quantify how well they predict the representation of emotions
(via their behavioral classification performance), explain how
different AUs contribute to these causal representations, and ex-
plore how we can improve existing models using insights from
the derived explanations.

This prediction-explanation-exploration framework (see Fig-
ure 6.1) is a rigorous methodology to estimate the proportion of
variance in categorization behavior that can be attributed to the
AU models of the emotions vs. cannot be attributed the models
themselves. We estimated the latter with the component of be-
havioral variance that arises from individual differences in the
interpretation of the AU combinations — i.e., the noise ceiling
(Lage-Castellanos et al., 2019; Nili et al., 2014). The noise ceiling
proposes that a fixed model cannot, by definition, explain any
variations between individuals who categorize facial expressions
with this model. Here, we use noise ceilings to demonstrate the
limitations of fixed, AU-based models of categorical emotions.

We tested the ability of seven influential models of facial
expressions of the six classic categorical emotions (see Meth-
ods and Table 6.1) to predict categorical emotion labels. To do
so, we used a psychophysics task containing a large set of dy-
namic facial expressions with random AU combinations. In this
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Prediction
Build and optimize predictive 
models of brain and behavior

Explanation
Inspect and manipulate the 
predictive model to explain its 
behavior

Exploration
Explore alternative models and/or 

improve upon existing ones

… is followed up by ...

… which 
facilitates ...

… which gives 
rise to ...

Figure 6.1 The modelling framework used in the current study, which
uses models for prediction, explanation, and exploration.

task, participants categorized each facial expression animation
as one of the six classic emotions, or “don’t know.” We used
the models to predict, for the same trials rated by the partici-
pants, the most likely emotion category, which were compared
to the actual emotion ratings. Next, to explain how specific AUs
contributed to emotion classification performance, we system-
atically removed individual AUs from each model and recom-
puted its performance in predicting human behavior. Finally,
we used these performance critical AUs to explore whether they
improved the predictions of models that do not represent them.
We show that models of the AU-emotion relationship substan-
tially improve their prediction performance when they comprise
performance-critical AUs. However, because this performance
remains below the noise ceiling, there is still model variance to
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explain, suggesting that the evaluated hypotheses AU-emotion
relations tested are not optimal yet. Importantly, these noise
ceilings indicate that individual differences contribute a large
proportion of the variations in emotion categorizations, suggest-
ing better models that include between-participant factors, such
as culture and other perceiver-related characteristics.

6.2 Methods

Hypothesis kernel analysis
To formalize AU-emotion mappings as predictive models, we
propose a novel method which we call “hypothesis kernel anal-
ysis”. In the context of the current study, we use this method
to reframe AU-emotion mappings as classification models that
predict the probability of an emotion given a set of AUs (analo-
gous to how people attempt to infer the emotion from others’ fa-
cial emotion expressions; Jack & Schyns, 2015). In what follows,
we conceptually explain how the method works. For a detailed
and more mathematical description of the method, we refer the
reader to the Supplementary Methods.

The underlying idea of the hypothesis kernel analysis is
to predict a categorical dependent variable (e.g., the perceived
emotion) based on the similarity between an observation with a
particular set of features (e.g., a face with a particular set of AUs;
the independent variables) and statements of a hypothesis (e.g.,
“happiness is expressed by AUs 6 and 12”). This prediction can
then be compared to real observations to evaluate the accuracy
of the hypothesis. The three methodological challenges of this
approach are how to measure the similarity between an obser-
vation and a hypothesis statement, how to derive a prediction
based on this similarity, and how to compare the predictions to
real data. Figure 6.2 outlines how we have solved these chal-
lenges in five steps, which we will describe in turn.
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Step 1: encode mappings 

Happiness = 12
Disgust = 9 + 10
Anger = 4 + 10 + 23

AUX

Ha
An

Di

Step 2: encode stimuli

Step 3: compute similarity

𝜙M,S = κ(M, S) = 

p(emo. | M, S) = softmax(𝜙)

M

S

10 + 23

9

12

Step 4: compute
             predictions

SMT

“AU space”

4 + 12

Step 5: compare predictions with labels

AUY
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An Di Ha
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Figure 6.2 Schematic visualization of the proposed method using a set
of hypothetical AU-emotion mappings (M) and stimuli (S) based on a small
set of AUs (five in total). The variable P represents the number of variables
(here: AUs), Q represents the number of classes (here: emotions), and N
represents the number of trials (here: facial expression stimuli). Note that
the AU space technically may contain any number of (P) dimensions, but is
shown here in two dimensions for convenience.

To quantify the similarity between an observation and a
hypothesis statement, we embed both in a multidimensional
space that is spanned by a particular set of variables (e.g., dif-
ferent AUs). In this space, we start by representing each class
of the dependent variable (corresponding to the statements of
the hypothesis) as a separate point. In the current study, this
amounts to embedding the different hypothesized AU configu-
rations (e.g., “happiness = AU12 + 6”; M in Figure 6.2) as points
in “AU space”, separately for each categorical emotion (see step
1 in Figure 6.2). The coordinates of each point are determined
by the hypothesized “importance” of each independent variable
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for that given class of the target variable. For example, the co-
ordinates of each point in AU space represents the hypothesized
relative intensity of each AU for a given emotion. As the AU-
emotion mappings evaluated in the current study only specify
whether an AU is included or excluded within a particular emo-
tional configuration, we specify the coordinates of their embed-
ding to be binary (0: excluded, 1: included). A different inter-
pretation of the class embeddings described here is that they rep-
resent the location of a typical facial expression for this emotion
in “AU space” according to a particular hypothesis.

As a second step, we embed each data point in the same
space as the hypotheses. This means, the data used for this pur-
pose should contain the same variables as were used to embed
the hypotheses. For example, in this study, we use emotion rat-
ings (i.e., the target variable) in response to dynamic facial ex-
pression stimuli with random configurations of AUs (i.e., the
independent variables; S in Figure 6.2) to test the hypothesized
AU-emotion mappings (see Dataset used to evaluate mappings).

With the hypotheses and the data in the same space, the next
step in our method is to compute, for each observation sepa-
rately, the “similarity” between the data and each class of the
target. For this purpose, we use kernel functions (step 3 in Fig-
ure 6.2), a technique that quantifies the similarity of two vec-
tors. Any kernel function that computes a measure of similarity
can be used, but in our analyses we use the cosine similarity as
it normalizes the similarity by the magnitude (specifically, the
L2 norm) of the data and hypothesis embeddings (but see Sup-
plementary Figure E.3 for a comparison of model performance
across different similarity and distance metrics).

As a fourth step, we interpret the similarity between the data
and a given class embedding as being proportional to the evi-
dence for a given class. In other words, the more similar a data
point is to the statement of a hypothesis the stronger the predic-
tion for the associated class. To produce a probabilistic predic-
tion of the classes given a particular observation and hypothesis,
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we normalize the similarity values to the 0-1 range using the soft-
max function (step 4 in Figure 6.2).1

Finally, the accuracy of the model can be summarized by
comparing its predictions to the actual values of the target vari-
able in the dataset (see step 5 in Figure 6.2). In this study, this
means that the predictions are compared to the actual emotion
ratings from participants. Although any model performance
metric can be used, we use the “Area under the Receiver op-
erating curve” (AUROC) as our model performance metric, be-
cause it is insensitive to class imbalance, allows for class-specific
scores, and can handle probabilistic predictions (Dinga et al.,
2020). We report class-specific scores, which means that each
class of the categorical dependent variable (i.e., different emo-
tions) gets a separate score with a chance level of 0.5 and a the-
oretical maximum score of 1.

Ablation and follow-up exploration analyses
To gain a better understanding of why some mappings perform
better than others, we performed an “ablation analysis”, which
entails removing (or “ablating”) AUs one by one from each con-
figuration for each evaluated mapping and subsequently rerun-
ning the kernel analysis to observe how this impacts model per-
formance. If ablating a particular AU decreases model perfor-
mance for a given emotion, it means that this AU is important
for perceiving this emotion. If on the other hand ablating an AU
increases performance for a given emotion, it could mean that
the inclusion of this AU in a given mapping is incorrect.

Using the results from the ablation analyses, we explored
strategies to enhance existing mappings. Specifically, we com-
puted for each emotion which AUs, on average across mappings,

1Readers familiar with machine learning algorithms may recognize this
as a specific implementation of a K-nearest neighbor classification model
with K = 1, which is fit on the embedded hypotheses (M) and cross-validated
on the data (S).
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led to a decrease in model performance after being ablated. We
then constructed “optimized” models by, for each mapping sep-
arately, adding all AUs that led to a decrease in model perfor-
mance after ablation and removing all AUs that led to an increase
in model performance after ablation. Then, the predictive analy-
sis was rerun and the “optimized” model performance was com-
pared to the original model performance.

Noise ceiling estimation
Instead of interpreting model performance relative to the the-
oretical optimum performance, we propose to interpret model
performance relative to the noise ceiling, an estimate of the in
principle explainable portion of the target variable. The noise
ceiling is a concept often used in systems neuroscience to cor-
rect model performance for noise in the measured brain data
(Hsu et al., 2004; Huth et al., 2012; Kay et al., 2013). Tradition-
ally, noise ceilings in neuroscience are applied in the context of
within-subject regression models (Lage-Castellanos et al., 2019).
Here, we develop a method to derive noise ceilings for classi-
fication models, i.e., models with a categorical target variable
(such as categorical emotion ratings) that are applicable to both
within-subject and between-subject models (see also Hebart et
al., 2020). In this section, we explain our derivation of noise ceil-
ings for classification models conceptually; the Supplementary
Methods outline a more detailed and formal description.

Noise ceiling estimation is a method that adjusts the the-
oretical maximum performance of a predictive model for the
presence of irreducible noise in the data. As such, like the the-
oretical maximum, the noise ceiling imposes an upper bound
on model performance. Another way to think about noise ceil-
ings is that they split the variance of the data into three portions:
the explained variance, the unexplained variance, and the “irre-
ducible” noise (see Figure 6.3). “Irreducible” is put in quotes be-
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Theoretical max.

Model performance

0.5
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Explained variance

Unexplained variance

“Irreducible” noise

M

Figure 6.3 The noise ceiling partitions the variance into explained vari-
ance, unexplained variance, and “irreducible” noise for any given model
(M). Here, AUROC is used as the metric of model performance, but the
noise ceiling can be estimated using any metric.

cause this proportion of noise can, in fact, be explained in prin-
ciple as will be discussed in the Discussion (see also the Supple-
mentary Methods. Importantly, the noise ceiling thus indicates
how much improvement in terms of model performance can be
gained for a given dataset (i.e., unexplained variance) and how
much cannot be explained by the model (i.e., the “irreducible”
noise).

In the context of the current study, we use the variance (or
“inconsistency”) in emotion ratings across participants in re-
sponse to the same set of facial expression stimuli to estimate
a noise ceiling for the different AU-based models. The noise
ceiling gives us insight into whether the evaluated set of AU-
based models are sufficiently accurate to explain variance that
can in principle be explained by AUs or whether we may need
differently parameterized AU-based models. This way, the im-
portance and limitations of AUs can be estimated empirically.
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Evaluated mappings
Many different AU-emotion mappings have been put forward,
but in this study we assess those summarized in Barrett et
al. (2019) (Table 1). Additionally, we included the AU-
emotion mappings from the “emotional FACS” (EMFACS)
manual (Friesen & Ekman, 1983). So, in total, we evaluated six
hypothesized AU-emotion mappings, which are summarized in
Table 6.1 (and an additional data-driven AU-emotion mapping,
see below).
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Table 6.1 Evaluated AU-emotion mappings in our study

Emotion
category

Darwin (1872) EMFACS Matsumoto et al.
(2008)

Cordaro et al.
(2018) - ref.

Cordaro et al.
(2018) - ICP

Keltner et al.
(2019)

Jack/Schyns

Anger 4 + 5 + 24 + 38 · 4 + 5 + 7 + 10 + 22 + 23
+ (25 ∨ 26)

4 + (5 ∨ 7) + 22 +
23 + 24

4 + 5 + 7 + 23 4 + 7 4 + 7 4 + 5 + 17 + 23
+24

· 4 + 5 + 7 + 10 + 23 +
(25 ∨ 26)
· 4 + 5 + 7 + 17 + (23 ∨
24)
· 4 + 5 + 7 + (23 ∨ 24)

· 4 + (5 ∨ 7)

· 17 + 24

Disgust 10 + 16 + 22 + 25
+ 26

· (9 ∨ 10) + 17 (9 ∨ 10), (25 ∨
26)

9 + 15 + 16 4 + 6 + 7 + 9 + 10
+ 25 + (26 ∨ 27)

7 + 9 + 19 + 25 +
26

9 + 10 + 11 + 43

· (9 ∨ 10) + 16 + (25 ∨
26)
· (9 ∨ 10)

Fear 1 + 2 + 5 + 20 · 1 + 2 + 4 1 + 2 + 4 + 5 + 20,
(25 ∨ 26)

1 + 2 + 4 + 5 + 20
+ 25 + 26

1 + 2 + 5 + 7 + 25
+ (26 ∨ 27)

1 + 2 + 4 + 5 + 7 +
20 + 25

4 + 5 + 20

· 1 + 2 + 4 + 5 + 20 + (25
∨ 26 ∨ 27)
· 1 + 2 + 4 + 5

· 1 + 2 + =5 + (25 ∨ 26
∨ 27)
· 5 + 20 + (25 ∨ 26 ∨ 27)

· 5 + 20



Table 6.1 Evaluated AU-emotion mappings in our study (continued)

Emotion
category

Darwin (1872) EMFACS Matsumoto et al.
(2008)

Cordaro et al.
(2018) - ref.

Cordaro et al.
(2018) - ICP

Keltner et al.
(2019)

Jack/Schyns

· 20

Happiness 6 + 12 · 12 6 + 12 6 + 12 6 + 7 + 12 + 16 +
25 + (26 ∨ 27)

6 + 7 + 12 + 25 +
26

6 + 12 + 13 + 14
+25

· 6 + 12

Sadness 1 + 15 · 1 + 4 1 + 15, 4, 17 1 + 4 + 5 4 + 43 1 + 4 + 6 + 15 + 17 4 + 15 + 17 + 24 +
43

· 1 + 4 + (11 ∨ 15)

· 1 + 4 + 15 + 17

· 6 + 15

· 11 + 17

· 1

Surprise 1 + 2 + 5 + 25 + 26 · 1 + 2 + 5 + (26 ∨ 27) 1 + 2 + 5 + (25 ∨
26)

1 + 2 + 5 + 26 1 + 2 + 5 + 25 +
(26 ∨ 27)

1 + 2 + 5 + 25 + 26 1 + 2 + 5 + 26 + 27

· 1 + 2 + 5

· 1 + 2 + (26 ∨ 27)

· 5 + (26 ∨ 27)

Note: Mappings evaluated in the current study. The mappings from Darwin (1872) were taken from Matsumoto et al. (2018). Both the “reference configuration” (ref.) and
the “international core pattern” (ICP) from Cordaro et al. (2018) are included. The + symbol means that AUs occur together. AUs following a comma represent optional AUs.
The inverted ^ symbol represents “or”. When multiple configurations are explicitly proposed for a given emotion (i.e., a “many-to-one” mapping), they are represented as separate
bullet points.
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All of these mappings propose that a number of AUs must
occur together to communicate a particular emotion. However,
the comparison between them is complicated by the fact that
not all of them posit a single, consistent set of AUs per emotion.
First, some contain multiple sets, such as the EMFACS manual
(Friesen & Ekman, 1983) proposing that “sadness” can be ex-
pressed with AUs 1 + 4 or AUs 6 + 15. Second, some offer op-
tional AUs for a set, such as Matsumoto et al. (2008) proposing
that “sadness” is associated with AUs 1 + 15 and optionally with
AUs 4 and/or 17. Thirdly, some describe mutually exclusive op-
tions of AUs for a set, such as Matsumoto et al. (2008) proposing
that “surprise” can be communicated with AUs 1 + 2 + 5 in com-
bination with either AU25 or AU26.

We address this issue by explicitly formulating all possible
AU configurations that communicate a particular emotion for
each mapping. For example, Matsumoto et al. (2008) propose
that “disgust” is associated with AU 9 or 10 and, optionally, AU
25 or 26, which yields six different possible configurations (9;
10; 9 + 25; 9 + 26; 10 + 25; 10 + 26). The specific configura-
tions for each emotion derived from each evaluated mapping
can be viewed in the study’s code repository (in mappings.py;
see Code Availability section). In our analysis framework, we
deal with multiple configurations per emotion (within a partic-
ular mapping), for each prediction separately, by using the con-
figuration with the largest similarity to the stimulus under con-
sideration (which occurs in between steps 3 and 4 in Figure 6.2).
We demonstrate that this procedure does not give an unfair ad-
vantage to mappings with more configurations using a simula-
tion analysis (see Supplementary Figure E.4).

In addition to evaluating existing mappings from the liter-
ature, we also constructed a mapping based on a data-driven
analysis of the relationship between the AUs and emotion rat-
ings from the dataset we use to evaluate the mappings. Impor-
tantly, to avoid circularity in our data-driven analysis (“double
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dipping”; Kriegeskorte et al., 2009), we performed the mapping
estimation and evaluation on different partitions of the data (i.e.,
cross-validation). Specifically, we estimated the mapping on ap-
proximately 50% of the trials from 50% of the participants (the
“train set”) and evaluated the mapping on the other 50% of trials
from the other 50% of the participants (the “test set”). Impor-
tantly, the train and test set contained unique facial expressions
and unique face identities, thus effectively treating both subject
and stimulus as a random effect (Westfall et al., 2016).

To estimate the data-driven mapping, we followed the pro-
cedure specified in Yu et al. (2012). For each AU and emotion,
we computed the Pearson correlation between the binary acti-
vation values (1 if active, 0 otherwise) and the binary emotion
rating (1 if this emotion was rated, 0 otherwise) for each partic-
ipant in the train set. The raw correlations were averaged across
the participants and binarized based on whether the correlation
was statistically significant at α = 0.05 (1 if significant, 0 other-
wise; uncorrected for multiple comparisons), which resulted in
a binary 6 (emotion) × 33 (AU) mapping matrix.

Dataset used to evaluate mappings
We use data from an existing dataset (Yu et al., 2012) which con-
tains emotion ratings in response to 2400 dynamic facial expres-
sions (with a duration of 1.25 seconds) with random AU con-
figurations from 60 subjects. Each stimulus was composed of
one of eight “base faces” and a random number of activated AUs
drawn from a set of 42 AUs. Per stimulus, the number of AUs
was drawn from a binomial distribution with parameters n = 6
and p = 0.5. The selected AUs varied in amplitude from 0
(not activated) to 1 (fully activated) in steps of 0.25 and a set of
temporal parameters which determined the exact time course
of each AU (see for details Yu et al., 2012). The original set of
42 AUs contained both compound AUs (such as AU25-12 and
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AU1-2) and AUs that could be activated both unilaterally (left or
right) and bilaterally (such as AU12). In order to encode these
AUs into independent variables, we recoded the compound AUs
(e.g., activation of AU1-2 was recoded as activation of both AU1
and AU2) and bilateral AUs (e.g., activation of AU12 was re-
coded as activation of both AU12L and AU12R), yielding a total
of 33 AUs: 1, 2L, 2R, 4, 5, 6L, 6R, 7L, 7R, 9, 10L, 10R, 11L, 11R,
12L, 12R, 13, 14L, 14R, 15, 16, 17, 20L, 20R, 22, 23, 24, 25, 26,
27, 38, 39, 43 (where L = left, R = right).

The emotion ratings were collected in a 7 alternative forced-
choice facial expression categorization task in which partici-
pants were instructed to label the stimuli using one of the six
universal basic emotions (“anger”, “disgust”, “fear”, “happiness”,
“sadness”, and “surprise) or, when the stimulus matched none of
the emotion categories, “other”. In addition, participants rated
the “intensity” of the perceived emotion, which ranged from 1
(not intense at all) to 5 (very intense). Trials in which the stim-
ulus was rated as “other” were removed from the dataset (be-
cause the evaluated mappings do not contain hypotheses about
this category) leaving a grand total of 121,902 trials (average per
subject: 2031.7 trials, SD: 311.5) for our analysis. This grand to-
tal contains 4660 repeated observations with an average of 26.16
(SD: 14.92) repetitions.

Code availability
All code used for this study’s analysis and visualization of re-
sults is publicly available from Github: https://github.com/
lukassnoek/hypothesis-kernel-analysis. The analyses were im-
plemented in the Python programming language (version 3.7)
and use several third-party packages, including numpy (Harris
et al., 2020), pandas (McKinney & Others, 2011), scikit-learn
(Pedregosa et al., 2011), and seaborn (Waskom, 2021). A Python
package to compute noise ceilings as described in the current
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study can be found on Github: https://github.com/lukassnoek/
noiseceiling.

6.3 Results

Prediction
In the first step of the modelling cycle, we evaluated how well
each hypothesized AU-emotion mapping could predict categor-
ical emotion rating behavior in human participant. To do so,
we developed a method to convert hypotheses about mappings
between AUs and emotions into predictive models (see Meth-
ods). We then evaluated these models on their ability to predict
categorical emotion labels from a psychophysics task contain-
ing a large set of dynamic facial expressions with random AU
configurations. For each of the sixty observers, we summarized
how well each model predicted the categorical emotion ratings
using the Area Under the Receiver Operating Curve (AUROC),
a metric with a chance level of 0.5 (which represents a model
that randomly guesses the labels) and a theoretical maximum
score of 1 (which represents a model that predicts each label per-
fectly). We additionally estimated a noise ceiling for each emo-
tion, which represents an estimate of the maximum achievable
model performance given the individual differences in ratings
across participants (see Methods). The logic behind a noise ceil-
ing is that a single fixed model cannot capture any difference in
emotion ratings across participants. The theoretical maximum
performance (i.e. an AUROC of 1) implies that different partic-
ipants categorize the same combinations of AUs with the same
emotion labels. However, if different individuals use different
emotion labels for the same combinations of AUs, then this ex-
perimental noise will be irreducible, in turn reducing the noise
ceiling and the proportion of variance that the models can pos-
sibly explain.
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Prediction

Figure 6.4 Prediction. AUROC scores for each mapping (different bars),
shown separately for each emotion (x-axis). Dots indicate individual par-
ticipants. Dashed line and value directly above represent the noise ceiling
(gray area represents ± 1 SD based on bootstrapping the repeated obser-
vations). The slightly different noise ceiling for Jack & Schyns results from
using half of the participants for evaluation.

The results of the predictive analysis are summarized in Fig-
ure 6.4, which shows the average and participant-specific AU-
ROC scores separately for each mapping and emotion. The
dashed line indicates each model’s noise ceiling. The results in-
dicate that almost all mappings predict each emotion well above
chance level (i.e., an AUROC of 0.5), although substantial dif-
ferences exist between different models and emotions. However,
average model performance (i.e. across mappings and emotions,
with AUROC = 0.68) is still far from the average noise ceiling
(i.e., an AUROC of 0.87). This indicates that the models tested
do not perform optimally. Finally, considering that optimal per-
formance is an AUROC of 1.0, substantially lower noise ceilings
in this experiment indicates that a large proportion of the vari-
ability of emotion categorizations across participants cannot, in
principle, be explained by any of the evaluated models.

Explanation
In the second step of the modelling cycle, we explained the
predictions and relative accuracy of the different mappings by
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Explanation

AU9 + AU12 + AU25 AU12

Figure 6.5 Explanation. Schematic visualization of the explanation pro-
cess through ablation of single AUs. The heatmap shows the average de-
crease (red) or increase (blue) across mappings after ablation of a single
AU (x-axis) from a particular emotion configuration (y-axis).

quantifying the effect of each AU on model performance us-
ing an “ablation analysis”. We systematically manipulated each
model by selectively removing (or “ablating”) each AU from
each emotion combination and then reran the predictive anal-
ysis (see Figure 6.5). The difference in model performance be-
tween the original (non-ablated) and ablated models indicates
how important the ablated AU is for each categorizing each emo-
tion. Specifically, if ablating an AU decreases performance for a
particular emotion, it implies that participants tend to associate
this AU with this particular emotion (and vice versa).

The heatmap in Figure 6.5 shows how ablation of each AU
impacts the model performance for each emotion, averaged
across each combination that contains that particular AU (for
the results per mapping, see Supplementary Table E.1 and Sup-
plementary Figure E.5). These results reveal both AUs that de-
crease performance when ablated (e.g., AU9 for disgust and AU5
for surprise) and AUs that increase performance when ablated
(e.g., AU5 for sadness). Importantly, these results suggest that
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models can potentially be improved by selectively adding or re-
moving these informative AUs (e.g., adding AU9 to Darwin’s
disgust mapping and removing AU5 from Cordaro et al. - ref).

Exploration
In the third step of the modelling cycle, we used the results from
the ablation analysis to explore alternative, optimized mappings
between AUs and emotions. We created optimized models by
enhancing mappings with all AUs that led to a decrease in model
performance after ablation (i.e., all “red” cells in the heatmap
from Figure 6.5) and removing AUs from mappings that led to
an increase in model performance after ablation (i.e., all “blue”
cells in the heatmap from Figure 6.5). Figure 4 (top) shows the
difference in model performance between the original and the
optimized model. Model performance improved substantially
for almost all mappings and emotions, with anger improving
the most (median improvement in AUROC: 0.13) and surprise
the least (median improvement in AUROC: 0.03). However, all
emotions were predicted well below the noise ceiling: the differ-
ence between the noise ceiling and optimal model performance
ranged from 0.08 for happiness and 0.13 for sadness categoriza-
tions (for details, see Supplementary Figure E.6).

In addition, we investigated how the optimized models led
to behaviors different from the original models, by comput-
ing their corresponding confusion matrix, which shows how a
model misclassifies trials. An ideal model will have a confusion
matrix with off-diagonal values of zero indicating no confusion.
Figure 6.6 shows that the original models frequently confused
anger with disgust and disgust with happiness. The optimized
models substantially reduced these confusions. To quantify this
reduction, we computed percentage difference of misclassified
trials (i.e., the off-diagonal values of the confusion matrix) be-
tween the optimized and original model, which ranged between
2.2% (Jack & Schyns) and 12.2% (Darwin, 1886).
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Exploration

AU9 + AU25 AU12

Figure 6.6 Exploration. Schematic visualization of the exploration pro-
cess through enriching existing models with additional AUs. Bar graph
shows the change in model performance of the optimal model relative to
the original model (cf. Figure 6.4). The dashed line represents the original
noise ceiling. Bottom: confusion matrices (normalized by the sum across
rows, indicating sensitivity) of the original and optimized model and reduc-
tion in confusion rate.
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6.4 Discussion
Since Darwin’s seminal work on the evolutionary origins of
emotional expressions, a debate has centered on the question of
the specific combinations of facial movements that consistently
expressed different emotions. The influential taxonomy of fa-
cial movements as AUs proposed by Ekman & Friesen (1976)
enabled different hypotheses to be formulated about the specific
combinations of action units that underlie the expression and
recognition of emotion categories.

In this study, we developed this approach further, by for-
malizing these proposals for combinations of AUs as predictive
models of human categorization behavior. We used these for-
mal models to quantitatively evaluate how well each model pre-
dicts the categorization of emotions. We then explained the dif-
ferences in predictive accuracy with systematic manipulations
of the AUs comprising each model. In turn, this generated in-
sights that enabled exploration of alternative and improved mod-
els. Moreover, we showed that models were inherently limited
in their prediction of human behavior, due to individual differ-
ences in how people perceive facial expressions.

With our model-based approach, we could precisely quan-
tify specifically how much different AU-emotion mappings pre-
dicted emotion categorizations. We found that all models could
predict a substantial proportion of the variance, but with pro-
nounced differences between models. The ablation analysis in-
dicated that these differences could be explained by AUs ben-
eficial for prediction that were lacking in some models, and
also that other models comprised AUs that in fact hindered
their predictions. We used these insights to explore alternative,
“optimized” models that, in turn, substantially improved pre-
dictive accuracy. This prediction-explanation-exploration cy-
cle demonstrates that a model-based approach offers a detailed
summary of the strengths and limitations of the evaluated mod-
els and therefore enables their improvements.
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An important advantage of formal models is we can use their
predictive accuracy to quantify within a common metric how
much of a cognitive capacity is accounted for, and how much
is not. To better understand the limits of the evaluated models,
we computed their noise ceiling. This partitions the gap between
the actual and maximal model performance into the unexplained
variance and that due to individual differences (see Figure 6.3).
The noise ceiling uses the individual variations in individuals
that categorize a given model to estimate an upper bound of the
model performance. Variance below the noise ceiling is consis-
tent across individuals and can thus, in principle, be explained
by a single, fixed model. In contrast, variance above the noise
ceiling represents individual differences (e.g., participant 1 rates
stimulus X as “anger” while participant 2 rates it as “disgust”)
which is impossible to explain by a single, fixed model.

Our results indicate that the evaluated models, including in
their optimized forms, do not reach the noise ceiling, imply-
ing that they likely lack important information. Future research
could improve these models so they may reach the noise ceil-
ing. One possibility is to “weigh” the AUs in each model (to
weight their importance, or probability), instead of having “bi-
nary” AUs (i.e. either “on” or “off ”) as is often the norm. Also,
facial expressions are inherently dynamic, so incorporating their
temporal information could also improve their categorization
(Delis et al., 2016; Jack et al., 2014).

The observation that the evaluated models are strongly lim-
ited by the observed individual differences in emotion ratings
begs the question what underlies these individual differences. In
the context of the current study, individual differences could in-
clude any factor that differs between individuals, including age,
sex, personality and culture of the perceiver &mdash all of which
have been shown to influence the association between AUs and
emotions (Jack et al., 2012; Parmley & Cunningham, 2014). In-
corporating these factors in the models or constructing separate
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models for different groups (e.g., for different cultures) could
account for the individual differences that would otherwise con-
tribute to noise.

In sum, our model-based approach allowed us to systemat-
ically test previously hypothesized mappings between AUs and
emotion categories, which we found explain a substantial pro-
portion of variance in emotion categorizations, but remain lim-
ited by individual differences. These question the possibility of
a universal model of emotional facial expressions. We propose
that future studies investigate the specific factors that cause indi-
vidual differences to enable the development of more complete
and accurate models of facial expressions of emotion.
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Chapter 7

Affective face perception
integrates both static and dynamic

information
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Abstract Facial movements are crucial for affective face
perception, yet research has shown that people are also influ-
enced by features of the static face such as facial morphology.
Most studies have either manipulated dynamic features (i.e., fa-
cial movements) or static features (i.e., facial morphology) mak-
ing it impossible to evaluate the relative contribution of either.
The current study investigates the effects of static and dynamic
facial features on three affective properties (categorical emotion,
valence, and arousal) inferred from stimuli in which both types
of features have been independently manipulated. Using predic-
tive machine learning models, we show that static and dynamic
features both explain substantial and orthogonal variance in cat-
egorical emotion and valence ratings, while arousal ratings are
only predicted accurately using dynamic, but not static, features.
Moreover, using a multivariate reverse correlation approach, we
show that static and dynamic features communicating the same
affective property (e.g., categorical emotions) are manifested dif-
ferently in the face. Our results demonstrate that in order to un-
derstand affective face perception, both facial morphology and
facial movements should be considered independently.
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7.1 Introduction
Faces are an important element of our daily life; faces communi-
cate affective states of others and elicit feelings in ourselves. We
might infer that someone is happy when she raises the corners
of her mouth and wrinkles her eyes and we might feel unpleas-
ant when confronted with a disapproving frown. Faces convey
such impressions through facial movements, which are thought
to be the primary instrument to express and communicate af-
fective states to others (Jack & Schyns, 2015). Nevertheless,
most research on affective face perception has used static de-
pictions of facial expressions in which only the peak of the ex-
pression is shown. As such, facial movements in static stimuli
are not directly observed but have to be inferred. Furthermore,
although facial movements are arguably the primary drivers of
how we perceive and are affected by others’ faces, studies have
argued that facial movements alone are unlikely to capture all
variation in how we perceive and are affected by others’ faces
(Barrett et al., 2019; Snoek et al., n.d.). One possible additional
source of information that may complement the dynamic infor-
mation conveyed by facial movements is the static, or “neutral”,
face. Although the static face is unrelated to the expressor’s af-
fective state, studies have shown that features of the static face,
such as facial morphology and complexion, in fact influence how
we perceive and experience faces (Hess, Adams, & Kleck, 2009;
Neth & Martinez, 2009). Although much research has exam-
ined both static features and dynamic features in the context of
affective face perception (reviewed below), they have never been
manipulated and compared using the same stimuli in the same
experiment. In the current study, we seek to investigate, quan-
tify, and disentangle the relative contribution of these static and
dynamic facial features to affective face perception.

The attempts to relate specific facial movements to affective
states go back as far as Charles Darwin’s descriptions of stereo-
typical facial expressions associated with categorical emotions
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(Darwin, 1872). Since Darwin, more quantitative efforts have
been made to establish robust associations between facial move-
ments and affective states, and categorical emotions in partic-
ular. An important development that facilitated these efforts
was the Facial Action Coding System (FACS; Ekman & Friesen,
1976), which outlines a way to systematically measure, quantify,
and categorize facial movements into components called “ac-
tion units” (AUs). Using FACS, studies have investigated and
proposed specific configurations of facial movements associated
with affective states such as categorical emotions (Jack et al.,
2014, 2012; Wegrzyn et al., 2017), valence and arousal (Höfling
et al., 2020; Liu et al., 2020), and pain (Chen et al., 2018; Kunz
et al., 2019; for a comprehensive overview, see Barrett et al.,
2019). Moreover, advances in computer vision spurred the de-
velopment of algorithms that are able to classify affective states
based on action units (J. Cohn & Kanade, 2007; Lien et al., 1998)
or other facial features such as facial landmarks (Toisoul et al.,
2021) or geometric features (Barman & Dutta, 2019; Murugap-
pan & Mutawa, 2021).

Despite the fact that facial features arguably need to be dy-
namic to communicate affective states, static morphological fea-
tures of the face have been found to influence, or “bias”, how peo-
ple interpret others’ faces. This claim is supported by research
showing that people can perceive emotions in neutral (i.e., non-
expressive) faces that by definition only contain static but no dy-
namic features. Such an effect has been demonstrated by manip-
ulating structural features of neutral faces, where, for example,
a neutral face with a lower nose and mouth or higher eyebrows
was more likely to be perceived as sad (Neth & Martinez, 2009;
see also Franklin et al., 2019). Similar effects have been observed
in relation to certain demographics (gender, ethnicity, or age) or
social judgements (e.g., dominance) that are associated with spe-
cific variations in facial morphology. For instance, research has
shown that neutral male faces are more likely to be perceived as
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angry than neutral female faces (Adams et al., 2016; Brooks et al.,
2018; Craig & Lipp, 2018) and people perceive fewer and less in-
tense emotions in older faces relative to younger faces (reviewed
in Fölster et al., 2014). The dominant explanation for these af-
fective inferences from static faces is that these effects are driven
by the visual resemblance of static features (e.g., a relatively low
brow) to dynamic features associated with a particular affective
state (e.g., lowering one’s brow as part of an anger expression;
Hess, Adams, & Kleck, 2009; Said et al., 2009; Zebrowitz, 2017;
but see Gill et al., 2014; Guan et al., 2018).

As discussed, many studies have investigated dynamic and
static features that underlie affective face perception. How-
ever, because these studies usually manipulate either dynamic
facial movements (Jack et al., 2014, 2009) or static facial features
(Franklin et al., 2019; Neth & Martinez, 2009; for an exception,
see Gill et al., 2014), the relative contribution of dynamic and
static information remains unknown. In addition, studies inves-
tigating the effect of dynamic features (such as AUs) on affective
face processing often use static stimuli (i.e., images; Krumhuber
et al., 2013) which only shows the “peak” of the expression. The
use of such static stimuli means facial movements are not di-
rectly visible and need to be inferred. As a consequence, in such
studies the effect of dynamic and static features on affective face
perception are fundamentally confounded. For example, a par-
ticipant cannot know if a relatively low eyebrow is low because
of a facial muscle movement or just because of the structure of
the face. This potential confound of static features is even more
problematic in automated facial emotion recognition systems,
which often require static images as input (e.g., including the
emotion recognition systems offered by Microsoft and Google1),
which may inadvertently use static facial features associated with
certain demographic groups (e.g., based on ethnicity or age, Xu

1https://azure.microsoft.com/en-us/services/cognitive-services/face,
https://cloud.google.com/vision/docs/detecting-faces
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et al., 2020; Bryant & Howard, 2019) leading to biased predic-
tions. Moreover, the confounding influence of static features is
especially problematic for the aforementioned hypothesis that
static features important for affective face perception visually re-
semble corresponding dynamic features (Hess, Adams, Gram-
mer, et al., 2009; Hess, Adams, & Kleck, 2009; Said et al., 2009).

To overcome these limitations, the current study investigates
the relative contribution of dynamic and static information to
affective face perception (see Figure 7.1). To disentangle these
two sources of information, we use a psychophysics approach
that features video stimuli in which both the dynamic informa-
tion (i.e., facial movements) and static information (i.e., facial
morphology) is manipulated. In terms of affective properties,
we focus on categorical emotions inferred by the observer in the
expressor as well as valence and arousal elicited in the observer.
Although these two concepts are fundamentally different (the
former is an estimate of the affective state of the expressor while
the latter two reflect the affective state of the observer), we in-
vestigate these properties to investigate how static and dynamic
facial features affect both affective perception (categorical emo-
tions) and affective experience (valence and arousal). We use
machine learning models that predict human ratings of these af-
fective properties based on dynamic and static information. Us-
ing this approach, which focuses on cross-validated predictive
model performance rather than statistical significance (Yarkoni
& Westfall, 2017), we are able to precisely quantify and com-
pare the variance explained by static and dynamic features of
the face. Finally, we implement a multivariate reverse correla-
tion technique to reconstruct, visualize, and compare the mental
representations of the facial features that underlie the informa-
tion extracted and used by our static and dynamic models. This
technique facilitates the interpretation of the commonalities and
differences between static and dynamic facial features important
for predicting categorical emotion, valence and arousal.
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Figure 7.1 Decomposition of facial expressions in static information (fa-
cial morphology) and dynamic information (facial movement), where static
information is operationalized as shape deviation relative to the average
face while dynamic information is operationalized as shape deviation rela-
tive to the static face. The current study’s aim is to quantify the importance
of static information, relative to dynamic information, in affective perception.

7.2 Methods

Participants
Thirteen participants (7 female, 6 male) participated in the “Fa-
cial Expression Encoding and Decoding” project, which con-
sisted of six psychophysics sessions and six (7T) MRI sessions.
Participants were recruited through Facebook. With the excep-
tion of three participants, all participants were students of the
Research Master Psychology or master Brain & Cognitive Sci-
ences at the University of Amsterdam. Several strict exclusion
criteria for participation were applied, including standard MRI
safety-related exclusion criteria, psychiatric conditions, use of
psychopharmacological medication, color blindness, and diffi-
culty with remembering faces. Additionally, participants had to
have participated in MRI research before and had to be between
18 and 30 years of age (resulting sample Mage = 22.6, SDage = 3.7).

Across six psychophysics sessions, participants rated the
perceived valence, arousal, and categorical emotion of short
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clips of dynamic facial expressions. These stimuli were gener-
ated using a 3D Morphable Modeling toolbox developed by and
described in Yu et al. (2012). The toolbox allows to generate
short video clips of facial expressions with a configuration of
prespecified “action units” (AUs) that describe particular visu-
ally recognizable facial movements. It does so by manipulating
the structure of a 3D mesh representing the surface of the face
according to the expected deformation in response to the activa-
tion of one or more AUs. Apart from amplitude (ranging from
0, inactive, to 1, maximally activated), several temporal param-
eters corresponding to the AU activation (onset latency, offset
latency, acceleration, deceleration, and peak latency) can be ma-
nipulated. In the toolbox, AU animations can be applied to any
3D face mesh from a database of 487 different faces (“face iden-
tities”), which vary in sex, age, and ethnicity.

For our stimuli, we used 50 different face identities that were
restricted to be of Western-Caucasian ethnicity and to an age be-
tween 18 and 30 years old (i.e., the same age range as our partic-
ipants). This set of face identities contained 36 female faces and
14 male faces. To animate each face stimulus, we selected a ran-
dom subset of AUs from a set of twenty bilateral AUs (AU1, AU2,
AU4, AU5, AU6, AU7, AU9, AU10Open, AU11, AU12, AU13,
AU14, AU15, AU16Open, AU17, AU20, AU24, AU25, AU27i,
AU43). The number of AUs for each stimulus were drawn ran-
domly from a binomial distribution with parameters n = 6 and p
= 0.5 (but with a minimum of 1 AU). The amplitude of each AU
activation was randomly selected from three equidistant values
(0.333, 0.667, and 1). The temporal parameters were the same
for each stimulus, which corresponds to a stimulus with a dura-
tion of 1.25 seconds and in which each AU activation peaks at
0.7 seconds. Each of the 3D face meshes belonging to a single
dynamic stimulus was rendered as a short (2D) video clip with a
resolution of 600 × 800 pixels containing 30 frames and a frame
rate of 24 frames per second.
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Experimental design
In total, 752 unique AU configurations were generated with the
parameters described above. This process was done separately
for two disjoint sets of AU configurations: one set of 696 con-
figurations functioning as the optimization set (used for model
fitting) and one set of 56 configurations functioning as the test
set (used for model validation; see Cross-validation section).
To minimize correlation between AU variables, the sampling
process of the number of AUs and AU amplitudes was iter-
ated 10,000 times and the selection yielding the smallest abso-
lute maximum correlation across all AU pairs was chosen (final
r = 0.093). Then, the AU configurations were randomly al-
located to the 50 face identities. To minimize the correlation
between face identity and AUs, this random allocation was iter-
ated 10,000 times and the selection yielding the smallest (abso-
lute) maximum correlation across all AU-face identity pairs (fi-
nal r = 0.126) was chosen. This counterbalancing process was
done separately for the optimization and test set.

Procedure
Each participant completed five psychophysics sessions in which
they rated a subset of the facial expression stimuli. In the sixth
session, participants rated the 50 static faces (i.e., without AU
animations) on their perceived attractiveness, dominance, trust-
worthiness, valence and arousal. These ratings are not used in
the current study. Because the test set trials were repeated three
times (to estimate a noise ceiling; see Noise ceiling estimation
section), the total number of rated stimuli was (696 + 56 × 3
= ) 864. Originally, three sessions were planned in which par-
ticipants rated 288 stimuli each. Due to a programming bug,
however, all but one of the participants rated (unbeknownst to
them) the same 288 stimuli in these three sessions. As such, par-
ticipants completed two extra sessions in which they rated the
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remaining stimuli with the exception of the (56 × 2 =) 112 test
trials, because the three repetitions needed to estimate the noise
ceiling were already obtained in the first three sessions. As such,
the total number of stimulus ratings was (288 × 3 + 232 × 2 = )
1328 (and 864 ratings for the single participant without the ac-
cidental session repeats).

In each session, the 288 stimuli (or 232 stimuli in session
4 and 5) were rated on three affective properties: categorical
emotion, valence, and arousal. Categorical emotion and va-
lence/arousal were rated on separate trials, so each of the stim-
uli were presented twice (once for a categorical emotion rating
and once for a valence/arousal rating). Stimuli were presented
in blocks of 36 trials, in which either categorical emotion or va-
lence/arousal was rated. The trial block’s rating type was chosen
randomly.

Each session lasted approximately 1.5 hours, which included
breaks (after each rating block), setting up and calibrating the
eyetracker (which is not used in the current study), an extensive
instruction, and a set of practice trials (only in the first block
of each session; 10 categorical emotions and 10 valence/arousal
ratings). Participants completed the ratings in a dimly lit room,
with their head resting on a chin rest (to minimize head move-
ment for the concurrent eyetracking), positioned 80 centimeters
from a full HD (1920 × 1080 pixels) monitor (51 × 28.50 cm)
on which the rating task was presented using the software pack-
age PsychoPy2 (v1.84; Peirce et al., 2019). Participants used a
standard mouse (used with their dominant hand) to submit re-
sponses during the rating task.

Stimulus presentation

Stimuli were presented on a gray background (RGB: 94, 94,
94). Each trial block started with a cue regarding the affec-
tive property that should be rated (categorical emotion or va-
lence/arousal) and was followed by a ten second baseline period
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presenting a fixation target (a white circle with a diameter of 0.3
degrees visual degree, DVA). Then, each facial expression stimu-
lus was presented for 1.25 seconds (the full duration of the clip).
The stimulus was shown at the center of the monitor with a size
of 6 × 8 DVA (preserving the aspect ratio of the original clip, i.e.,
600 × 800 pixels). The stimulus was followed by an interval of 1
second plus a duration drawn from an exponential distribution
(with λ = 1) in which only the fixation target was shown. This
interval was followed by the presentation of the rating screen
(discussed below). The rating screen was shown until the partic-
ipant gave a response (mouse click). Another interval followed
(which included a fixation target) with a duration of 1 second
plus a duration drawn from an exponential distribution (with
λ = 1), after which the next stimulus was shown. After all 36
trials of a trial block, another baseline period including a fixa-
tion target was shown and was followed by the rating type cue
of the next block, which the participant could start by a mouse
click. After four trial blocks, participants could take a break if
desired.

Categorical emotion ratings

For the categorical emotion ratings, participants were instructed
to “Judge the faces with regards to the emotion that the face
shows, if any” (in Dutch: “Beoordeel de gezichten op de emotie
die de gezichten (mogelijk) laten zien”). For each categori-
cal emotion rating, participants were presented with a prompt
which included six trapezoids (with the corresponding labels
“anger”, “disgust”, “fear”, “happiness”, “sadness”, and “surprise”
next to it) and a single circle (with the label “None”) arranged in
a circle with equal angles between each of the seven options (i.e.,
360/7 degrees; see Figure 7.2). The trapezoids had a length of 7
DVA, the circle had a radius of 1 DVA, and the text labels had
a text height of 0.7 DVA; the trapezoids, circle, and text were all

233



7.2. Methods

white. At the onset of the rating prompt, the mouse cursor ap-
peared in the middle of the screen. Participants were instructed
to click on the trapezoid corresponding to the perceived emotion
from the previously shown facial expression stimulus. Further-
more, participants were instructed to simultaneously rate the in-
tensity of the emotion, which was linked to the radial position of
the mouse click within the trapezoid, where responses closer to
the center indicated lower intensity and responses farther away
from the center indicated higher intensity. After the partici-
pant clicked on the trapezoid, the trapezoid changed color from
white to black anywhere between the response and the side of the
trapezoid closest to the center (see Figure 2). Whenever the fa-
cial expression stimulus did not match any of the six categorical
emotion labels (“anger”, “disgust”, “fear”, “happiness”, “sadness”,
and “surprise”), participants were instructed to click on the cir-
cle above the label “None” (“Geen van allen” in Dutch). There
was no intensity rating associated with “None” responses. Af-
ter a response and the change in color of the selected trapezoid
or circle, the rating prompt remained on screen for 0.2 seconds.
There was no response time limit for the ratings.

Valence/arousal ratings

For the valence and arousal ratings, participants were asked to
rate how they experienced each face in terms of arousal (on a
scale ranging from “not activated” to “activated”) and valence
(on a scale ranging from “unpleasant” to “pleasant”). The in-
structions explained the valence dimension as follows: “On the
pleasant/unpleasant dimension, you should indicate how you
experience the faces” (in Dutch: “Met de onprettig/prettig di-
mensie geef je aan hoe jij de gezichten ervaart”). The instruc-
tions explained the arousal dimension as follows: “On the not
activated/activated dimension, you indicate how much the face
activates you. With ‘activated’, we mean that the face makes

234



7.2. Methods

you feel alert, energized, and/or tense. With ‘not activated’, we
mean that the face makes you feel calm, quiet, and/or relaxed”
(in Dutch: “Met de niet geactiveerd/geactiveerd dimensie geef
je aan in hoeverre het gezicht jou activeert. Met “geactiveerd”
bedoelen we dat het gezicht je alert, energiek, en/of gespannen
doet voelen; met “niet geactiveerd” bedoelen we dat het gezicht
je kalm, rustig, en/of ontspannen doet voelen”).

Valence and arousal ratings were acquired using a single rat-
ing prompt (see Figure 7.2). This prompt included two axes
(white lines), a horizontal and a vertical one, of equal length (14
DVA). The horizontal axis represented the arousal axis with neg-
ative values indicating low arousal (“Not activated”, or “Niet ge-
activeerd” in Dutch) and positive values indicating high arousal
(“Activated”, or “Geactiveerd” in Dutch). The vertical axis rep-
resented the valence axis with positive values indicating posi-
tive valence (“Pleasant”, or “Prettig” in Dutch) and negative val-
ues indicating negative valence (“Unpleasant”, or “Onprettig” in
Dutch). Labels at the ends of the axis lines were white and had a
text height of 0.7 DVA. Participants were instructed to indicate
the valence and arousal of the previously shown facial expres-
sion facial expression stimulus by a single mouse click anywhere
within the 2D space. After a response, a white circle (0.3 DVA)
appeared at the clicked position for 0.2 seconds, after which the
rating prompt disappeared.

Data preprocessing
Rating preprocessing

For the categorical emotion analyses, we removed all ratings in
which the participant responded with “None”. This left on aver-
age 1125 trials (SD = 165), which is 87% of the total number of
trials. The valence and arousal ratings were not filtered or other-
wise preprocessed. The accidentally repeated trials from session

235



7.2. Methods
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Figure 7.2 Prompts for categorical emotion ratings (left) and va-
lence/arousal ratings (right).

1 (that do not belong to the test set; see Cross-validation sec-
tion) were reduced to a single rating for each unique stimulus by
taking the most frequent emotion label (for the categorical emo-
tion ratings) or the average rating value (for the valence/arousal
ratings) across repetitions. In addition, the valence and arousal
ratings were mean-centered separately for the optimization and
test set to correct for spurious differences in the mean across the
two partitions.

Static and dynamic feature operationalization

As an operationalization of face structure, we use the set of 3D
face meshes underlying each dynamic facial expression stimu-
lus. The reason for focusing on the underlying 3D face mesh,
instead of the rendered 2D pixel array actually shown to the par-
ticipants, is that the 3D face mesh allows to isolate face structure
information from face texture information while in the 2D pixel
space these two factors are confounded. In the 3D face space,
each stimulus can be represented as a collection of 30 meshes
(corresponding to the 30 frames in each animation), each con-
taining a set of 3D coordinates making up the vertices of the
mesh. In our stimulus set, each 3D face mesh has 31049 vertices.
As such, any given stimulus can be represented as a 30 (frames)
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× (vertices) × 3 (coordinates) array with values that represent the
position of the vertices in real-world space.

The first step in our feature operationalization pipeline is to
separate the static and dynamic information. We operational-
ize the static information as the 3D face mesh corresponding to
the first frame of each stimulus (which corresponds to a “static”
or “neutral” face mesh without any AU activation). Using this
operationalization, the static information from two stimuli with
different AUs (but the same face identity) is equivalent. We op-
erationalize the dynamic information for each stimulus as the
difference between the vertex positions at the frame containing
the peak AU activation (frame 15) and the first frame. As such,
both the static information and the dynamic information of each
stimulus can be represented as a 31049 (vertices) × 3 (coordi-
nates) array.

Using all vertex positions as features means that the number
of features (i.e., 31049 × 3 = 93147) would vastly outnumber the
number of observations (i.e., 752 unique dynamic facial expres-
sions), which makes model fitting prohibitively computationally
expensive and bears a high risk of overfitting. As such, reducing
the number of features is desirable. The fact that the vertices are
highly spatially correlated (i.e., neighboring vertices likely have
similar coordinates) warrants using principal component anal-
ysis (PCA) to reduce the total feature space. Here, we use PCA
to reduce the original feature space (containing 93147 dimen-
sions) to a 50-dimensional space containing variables that rep-
resent linear combinations of the original features. Formally, the
PCA model estimates a 2D weight matrix, W, with dimensions
50 × 93147 and a mean vector, μ̂, with length 93147, which are
then used to transform the original set of vertices (V; flattened
across coordinates) into a 50-dimensional set of features (X):

X = (V − μ̂)ŴT (7.1)
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In this lower-dimensional feature space, almost all variance
from the high-dimensional feature space is preserved: about
99.99% for the static feature space and about 99.95% of the dy-
namic feature space (see Supplementary Figure F.1). The repre-
sentation of the top four PCA components in vertex space are,
for both the static and dynamic feature set separately, visualized
in Figure 7.3, which shows that each PCA component represents
an interpretable facial movement (e.g., PC1 of the dynamic fea-
ture set represents a mouth drop and PC1 of the static feature
set represents a relatively wide and long face with a relatively
strongly protruding nose and brow).

Finally, both the static and dynamic PCA-transformed fea-
tures (Xj) are divided by their estimated standard deviation (σ̂ j)
across observations:

Xj :=
Xj

σ̂ j
(7.2)

This operation makes sure that each feature has the same
scale and thus each feature is equally strongly regularized during
model fitting (see Predictive analysis section). Note that usually
each feature is additionally mean-centered as well, but this is not
necessary because the PCA transform already centers the data.

In the current article, we will refer to a set of PCA-
transformed features (X) as a feature set. In addition to having a
dynamic and static feature set, we also horizontally concatenated
these two feature sets to create a combined feature set (which
thus contains 100 features), which serves to investigate to what
extent the two feature sets explain unique variance in the target
variables.

Predictive analysis
For our main analysis, we predicted the categorical emotion, va-
lence, and arousal ratings based on static and dynamic features
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Figure 7.3 Visualization of the extracted PCA components. The first
four PCA components of both the dynamic features (left) and static fea-
tures (right) are visualized by plotting the inverse transform of a single
low-dimensional feature set to 3 standard deviations above the average
(Xj := 3σ̂Xj ). Colors represent the signed deviation from the mean in stan-
dard deviations.
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using separate models for each participant. Because the cate-
gorical emotion ratings represent a categorical variable, the cat-
egorical emotion analysis used a classification model. The va-
lence and arousal ratings represent continuous variables and are
therefore analyzed using a regression model. These two types of
models are discussed in turn.

Categorical emotion model

The categorical emotion analysis used a regularized multinomial
logistic regression model as implemented in the Python package
scikit-learn (Pedregosa et al., 2011). The choice for this partic-
ular predictive model stems from its probabilistic formulation,
which makes it suitable for the Bayesian model inversion pro-
cedure described in the Bayesian reconstruction section. For-
mally, the multinomial logistic regression model assumes that
the target variable is distributed according to a categorical dis-
tribution parameterized as follows:

p(y) ∼ Categorical(g(Xβ + α)) (7.3)

where β represents a set of parameters that are linearly com-
bined with the feature values (X) and an intercept term (α),
which is passed through the softmax function, g:

g(Xiβ + α) = eXijβ+α∑P
j=1 eXijβ+α (7.4)

where p(yi|Xi) is a vector with a length equal to the number
of classes. Although it is possible to derive discrete predictions
by subsequently taking the argmax across the vector with class
probabilities, we only use the probabilistic predictions because
we use a probabilistic model performance metric (Tjur’s pseudo
R2; see Performance metrics section). In the context of our cat-
egorical emotion analysis, the fitted multinomial logistic regres-
sion model outputs predictions in the format of the probability
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of each of the six categorical emotions given the set of static or
dynamic (or their combination) features of a given facial expres-
sion stimulus. The logistic regression model was used with bal-
anced class weights to avoid effects due to imbalance across class
frequencies, a regularization parameter (C) of 10, and a liblinear
solver.

Valence and arousal models

Both the valence and arousal analysis used a ridge regres-
sion model as implemented in the Python package scikit-learn.
Like the multinomial logistic regression model, linear regres-
sion models (including the ridge regression model) have a well-
defined probabilistic formulation, which assumes that the target
variable (yi) is normally distributed:

p(y) = N (Xβ, σεI) (7.5)

where Xβ represents the mean and σεI the standard devi-
ation of the normal distribution. Note that we do not estimate
an intercept term (α) because we standardize our features (X)
and target variable (y) before the analysis. After estimating the
parameters β and σε (i.e., β̂ and σ̂ε), predictions for a given ob-
servation (Xi) can be made as follows:

ŷi = Xi β̂ (7.6)

In the context of our valence and arousal model, this means
that the valence and arousal values are predicted on the basis of
a linear combination of the static or dynamic features. The ridge
regression model was fitted with a regularization parameter of
500 and without an intercept.
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Cross-validation procedure

To facilitate optimization of the analysis and model hyperpa-
rameters without the risk of overfitting (Kriegeskorte et al.,
2009), the data (i.e., all 752 unique stimuli and associated rat-
ings) were divided into two independent sets: an optimization
set with 564 unique stimuli and a test set with 150 unique stimuli
(which contains 450 ratings, because each test trial was repeated
three times in order to estimate a within-participant noise ceil-
ing). Note that the set of unique test set stimuli is composed
of the 56 stimuli originally designated as test set stimuli and an
additional 96 stimuli randomly sampled from the accidental re-
peated trials from the first session; the reason to increase the test
set size is to reduce the variance in the estimate of model per-
formance (Varoquaux et al., 2017; Varoquaux, 2018). The dis-
tribution of categorical emotion, valence, and arousal ratings is
visualized, separately for the optimization and test set, in Sup-
plementary Figure F.2, which shows that the two sets are very
similar in their rating distributions.

Within the optimization set, we compared different prepro-
cessing techniques (such as standardization before or after PCA
fitting) and model hyperparameters (such as the model’s reg-
ularization parameter, which was evaluated for α and 1

C : 0.01,
0.1, 1, 10, 50, 100, 500, 1000). This was done using repeated
10-fold cross-validation within the optimization set, which en-
tails fitting the model on 90% of the data (the “train set”) and
evaluating the model performance on the prediction of the left
out 10% of the data (the “validation set”). The results of this
optimization procedure indicated that a regularization param-
eter of 10 for the logistic regression model and a regularization
parameter of 500 for the regression models led to the highest
cross-validated model performance within the optimization set,
which were used for each participant-specific model.

This cross-validation procedure within the optimization set
was repeated multiple times to optimize the preprocessing and

242



7.2. Methods

model hyperparameters, which results in a positively biased es-
timate of cross-validated model performance (Kriegeskorte et
al., 2009). As such, we fitted each model with the optimal hy-
perparameters (as reported in the Categorical emotion model
and Valence/arousal models sections) once more on the entire
optimization set and subsequently cross-validated it to the test
set. This cross-validation from the optimization to test set was
only done once to ensure an unbiased estimate of cross-validated
model performance. Notably, in the test set, the trial repetitions
were not reduced to a single rating in order to estimate the noise
ceiling specifically for the model performance on the test set.

Performance metrics

To evaluate the cross-validated model performance of the cate-
gorical emotion model, we used Tjur’s pseudo R2 score (Tjur,
2009). We chose this particular metric instead of more well-
known metrics for classification models (such as accuracy) be-
cause it is insensitive to class frequency, allows for class-specific
scores, and has the same scale and interpretation as the R2 score
commonly used for regression models (Dinga et al., 2020). To
evaluate the cross-validated model performance of the valence
and arousal models, we used the R2 score. Note that the theoret-
ical maximum value of both Tjur’s pseudo R2 score and the reg-
ular R2 score is 1, while the minimum of Tjur’s pseudo R2 score
is -1 and the minimum for the regular R2 score is unbounded;
chance level for both metrics is 0.

Population prevalence

Although participant-specific cross-validated model perfor-
mance scores are unbiased estimates of generalizability, above
chance level estimates may be due to chance (although this is
unlikely given the relatively large size of our test set; Varoquaux,
2018). Additionally, reporting only summary statistics (such as
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the mean or median) of the set of within-participant model per-
formance estimates ignores the between-participant variance.
One possibility to summarize and quantify model performance
across the set of participants is to test their mean score against
the theoretical chance level using a one-sample t-test. This ap-
proach, however, is invalid for unsigned metrics, such as the
(pseudo) R2 scores used in this study, which logically cannot
have a population mean below chance level and thus cannot be
tested using a one-sample t-test (which assumes a symmetric
gaussian sampling distribution around the chance level; Allefeld
et al., 2016).

An alternative statistical framework is provided by preva-
lence inference (Allefeld et al., 2016; Rosenblatt et al., 2014),
which estimates the proportion of the population that would
show the effect of interest. Here, we use the Bayesian approach
to prevalence inference described by Ince et al. (2020). This par-
ticular implementation estimates a posterior distribution of the
population prevalence proportion (a number between 0 and 1),
which is based on the number of statistically significant effects
across participants. Statistical significance for a given partici-
pant (i.e., the “first-level test statistic”) is computed using a non-
parametric permutation test (Allefeld et al., 2016; Ojala & Gar-
riga, 2010), in which the observed cross-validated model per-
formance score is compared to the distribution of model perfor-
mance scores resulting from the model predictions on permuted
test set values. Formally, the p-value corresponding to an ob-
served score, scobs, given a set of Q permutation values, scperm, is
computed as follows:

p =
∑Q

p=1 I(sc
perm
i ≥ scobs) + 1
Q + 1

(7.7)

where I is an indicator function return 1 when the expression
in brackets (scperm

i ≥ scobs) is true and 0 otherwise. In our anal-
yses, we ran 1000 permutations and used a significance level (α)
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of 0.05. Note that although significance of participant-specific
effects is computed using a binary decision threshold (as is done
in traditional null-hypothesis significance testing), the posterior
resulting from the Bayesian prevalence inference analysis is not
thresholded.

The issues associated with group-level tests of model per-
formance against chance level do not apply to group-level tests
between model performance estimates of different classes of
the target variable (e.g., between different emotions), because
a symmetric distribution can be assumed for these values.

Noise ceiling estimation
If there is measurement noise in the target variable, perfect
model performance (i.e., at the theoretical maximum) is im-
possible. In case of measurement noise, it is more insightful to
compare model performance to an estimate of the noise ceiling,
an upper bound that is adjusted for measurement noise in the
target variable (Lage-Castellanos et al., 2019). We developed a
method to derive noise ceilings for classification models, which
is reported and explained in detail in Chapter 7. We use this
method to estimate noise ceilings for our categorical emotion
models.

For the valence and arousal models, we developed a method
to estimate a noise ceiling, assuming that the regular R2 score is
used, that is very similar to the aforementioned method to es-
timate noise ceilings for classification models (see for a related
method, Sahani & Linden, 2003; Schoppe et al., 2016). Recall
that the R2 score is computed as 1 minus the ratio of the residual
sum of squares (RSS) to the total sums of squares (TSS):

R2 = 1 − RSS
TSS

= 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2 (7.8)

where the RSS term is the sum of the squared deviations of
the predicted values (ŷi) from the true values (yi) of the target
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variable. The R2 noise ceiling can be computed using the previ-
ous formula when setting the prediction of each unique observa-
tion to the mean across its repetitions, which represents the op-
timal prediction any regression model can make given the vari-
ance across repetitions. Formally, for observation i repeated R
times, the optimal prediction (y∗

i ) is computed as follows:

y∗
i = 1

R

R∑
r=1

yir (7.9)

This formulation follows from the fact that regression mod-
els must make the exact same predictions for repeated obser-
vations and the prediction that minimizes the residual sum of
squares for any given observation is the mean across its repe-
titions. Note that the computation of the R2 noise ceiling does
not depend on the actual model used for prediction, but only on
the design matrix (X, which determines which observations are
repetitions) and the target variable (y). It follows that for a tar-
get variable without repeated observations, the R2 noise ceiling
is 1. For more details on the conceptual and mathematical basis
of this method, see Snoek et al. (n.d.).

Bayesian reconstructions
The predictive analyses in the current study predict the affective
property (y) given a set of static or dynamic features (X), with the
aim to approximate the process underlying affective face per-
ception. Another, complementary goal might be to estimate
and visualize, or “reconstruct”, the features (X) that underlie a
particular affective percept (y), as is commonly done in reverse
correlation studies (Brinkman et al., 2017; Jack & Schyns, 2015,
2017). Usually, such reverse correlation studies estimate the re-
lationship between stimulus features (X) and the target variable
(y) separately for each feature and (in case of a categorical target
variable) different classes of the target variable. Although this
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strictly univariate approach has yielded valuable insights across
various scientific domains including vision (Neri et al., 1999),
neuroscience (Ringach & Shapley, 2004), and more recently, so-
cial psychology (Brinkman et al., 2017), we believe it can be im-
proved in terms of parsimony and flexibility. First, univariate
correlation methods assume that each feature (Xj) is indepen-
dent from all other features. This assumption may hold for stim-
ulus sets that are completely randomly generated, but for stimuli
that are parameterized by more complex and correlated features
(such as facial movements), this assumption may break down.
Furthermore, typical reverse correlation methods yield point es-
timates of the relationship between features and the target vari-
able (usually correlations), which ignores the uncertainty of the
resulting feature space visualizations.

To overcome these limitations, we use a multivariate
Bayesian version of reverse correlation to reconstruct the typi-
cal dynamic and static features underlying categorical emotions
and valence and arousal levels. This technique is increasingly
popular in systems neuroscience (Bergen et al., 2015; Naselaris
et al., 2011; Wu et al., 2006), where it is used to reconstruct
stimulus features (such as the stimulus orientation) or complete
stimuli (i.e., their pixel values) from neural data. This approach
consists of two steps. First, an encoding (or forward) model is
estimated, which predicts the neural data as a (usually linear)
function of the stimulus features. Second, using Bayes theorem,
the encoding model is “inverted” to generate a reconstruction
(or backward) model that estimates the stimulus features for a
given pattern of neural data. Formally, for a given encoding
model estimating the probability of the target variable given a
set of stimulus features, p(y|X) (i.e., the likelihood), the recon-
struction model, p(X|y) (i.e., the posterior) can be obtained as
follows:

p(X|y) = p(y|X)p(X)
p(y)

(7.10)
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where p(X) represents the prior distribution on the stimu-
lus features and p(y) represents a normalizing constant. Impor-
tantly, in this inversion step, the previously estimated param-
eters of the encoding model (e.g., β̂, α̂, and σ̂ε in a typical lo-
gistic or linear regression model) are fixed. In the context of
the current study, the encoding models are the logistic and lin-
ear regression models that predict the target variable (categorical
emotion, valence, and arousal) as a linear function of dynamic
or static stimulus features. The reconstructions shown in the re-
sults section are based on the parameters (β̂, α̂, and σ̂ε) averaged
across all participant-specific encoding models.2

In our reconstructions, we estimate the most probable stim-
ulus given a particular value of the target variable, p(X|y). For
our categorical emotion reconstructions, we reconstruct the
most probable face for each of the six categorical emotions sep-
arately; for the valence and arousal models, we reconstruct the
most probable face at seven different levels of the target variable:
-0.6, -0.4, -0.2, 0.0, +0.2, +0.4, and +0.6. These target values are
on the same scale as the original ratings (which ranges from -
1 to 1). Importantly, these values represent the ratings before
normalization such that a value of 0 represents the midpoint of
the scale. We do not reconstruct the faces corresponding to the
extremes of the scales (i.e., between -0.6 and -1 and +0.6 and
+1), because the models rarely make predictions of this magni-
tude (see Supplementary Figure F.5) and as consequence such
reconstructions tend to yield morphologically unrealistic faces.

To not bias the reconstructions to a particular configuration,
we use a uniform prior on the stimulus features, bounded by the
minimum and maximum values observed in our PCA features
(X), which ensures that the reconstructions do not include mor-
phologically implausible configurations:

2Visualizations of participant-specific reconstructions are available in
the figures/reconstructions subdirectory of this study’s Github repos-
itory (see Code availability).
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p(Xj) = U(min(Xj), max(Xj)) (7.11)

Because the denominator in Bayes formula is often not pos-
sible to derive analytically, we estimate the posterior distribution
using Markov Chain Monte Carlo (MCMC) sampling as imple-
mented in the Python package pymc3 (Salvatier et al., 2016). We
used the package’s default sampler (NUTS) with four indepen-
dent chains, each sampling 10,000 draws (in addition to 1000
tuning draws) from the posterior. In the current study, the pos-
terior distribution for each feature represents the probability of
the value of each dynamic or static stimulus feature for a given
categorical emotion or valence or arousal value. For our recon-
structions, we estimate the most plausible reconstruction from
the posterior. Instead of using the model’s maximum a posteri-
ori (MAP) values (which often fail to coincide with the region
of highest density in high-dimensional posteriors; Betancourt,
2017), we use the midpoint between the bounds of the 5% high-
est posterior density interval (HDI):

X∗
j = 1

2
(HDI(Xj)upper − HDI(Xj)lower) (7.12)

The posteriors and chosen reconstruction values for the first
ten features (X1 − X10) are visualized in Supplementary Figure
F.6 (for the dynamic feature set) and Supplementary Figure F.7
(for the static feature set), which shows that our chosen recon-
struction values correspond to the posterior’s point of highest
density. From this figure, one particular limitation with respect
to the inversion of the categorical emotion model becomes clear,
i.e., that most posteriors peak at the extremes of the correspond-
ing feature values. The reason for this is that the softmax func-
tion maps values (i.e., X) from an arbitrary scale to the 0-1 do-
main (i.e., p(y|X)) and cannot be inverted to yield the exact fea-
ture values (i.e., X∗) given a particular probability; in fact, for
a given probability, the “inverted softmax” can yield infinitely
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many different possible feature value combinations (X∗), but be-
cause of the target (y) follows a multinomial distribution (with
p = softmax(Xβ + α)), the probability of each feature value
increases proportionally to its magnitude. However, this issue
does not affect the relative differences in magnitude between
feature values (e.g., X∗

j is twice as large as X∗
j+1) and thus does

not affect the quality of the reconstructions.
In the current study, the values of the posterior represent the

PCA-transformed variables. To transfer these values into vertex-
space, we need to invert the standardization step and the PCA-
transform as well, which involves the following linear transfor-
mation from PCA-space (X∗) to vertex-space (V∗):

V∗ = (X∗σ̂)Ŵ + μ̂ (7.13)

where V∗ represents the most probable static face or most
probably dynamic movement in vertex-space (i.e., a 31049 ×
3 array) given a particular emotion or valence/arousal value
(see Figure 7.4 for a visualization of the reconstruction proce-
dure). Notably, unlike traditional univariate reverse correlation
reconstructions, the reconstruction values from the Bayesian ap-
proach discussed here are in the original units of the feature
space (here: vertex positions or deviations) and are thus directly
interpretable and can be visualized in a straightforward manner.

To interpret and gain further insight into the (relations be-
tween the) reconstructions, we visualize the dynamic move-
ments on top of the average static face and for both the static
and dynamic information reconstructions. We color-code the
deviations separately for the X, Y, and Z dimension. In these
visualizations, blue colors represent leftward (X), downward
(Y), or backward (Z) deviations/movements and red colors
represent rightward (X), upward (Y), or forward (Z) devia-
tions/movements. The software package plotly (https://plotly.
com/python) was used to create the visualizations. Moreover,
to gain insight into how different reconstructions relate to each
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Figure 7.4 Visualization of the encoding (“forward”) model (top) and the
reconstruction (“backward”) model (bottom). Note that during the encoding
step, a set of N observations is used to estimate the parameters of the en-
coding model, while in the reconstruction step only a single observation is
reconstructed (although reconstruction can be done for multiple observa-
tions at once, if desired).

other (e.g., across different emotions or across static and dy-
namic reconstructions for a given affective attribute), we com-
pute the Pearson correlation between any two reconstructions
(flattened across spatial coordinates into a vector of length
93147).

Code availability
All code used for the analyses reported in the current study
are available on Github: https://github.com/lukassnoek/
static-vs-dynamic. Additionally, code to estimate noise
ceilings for both classification and regression models has
been released as a Python package, available on Github:
https://github.com/lukassnoek/noiseceiling. The code used for
this project makes frequent use of the Python packages numpy
(Harris et al., 2020), pandas (McKinney & Others, 2011), scikit-
learn (Pedregosa et al., 2011), matplotlib (Hunter, 2007), and
seaborn (Waskom, 2021). The prevalence inference estimates
were computed using the bayesprev Python module from Ince
et al. (2020).
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7.3 Results
In the next two subsections, we report the model performance
of the encoding model and the reconstructions from the recon-
struction model.

Encoding model performance
Figure 7.5 summarizes the average explained variance for each
affective property (and, in the context of the categorical emotion
analysis, different emotions), separately for the static, dynamic,
and combined feature sets. For all affective properties, the model
based on the combined feature set explains approximately as
much as the sum of the static and dynamic model performance
(see Supplementary Figure F.4, indicating that static and dy-
namic features explain unique and additive variance. Moreover,
the general pattern of results is very similar to (and thus repli-
cates) the results obtained on the optimization set (see Supple-
mentary Figure F.3. The posteriors of the population prevalence
estimates associated with the model performance scores are vi-
sualized in Figure 7.6.

Categorical emotion model

In the categorical emotion analysis, on average about 5.8% of
the variance can be explained by static features (versus 29.1%
by dynamic features and 33.1% by the combined feature set).
The highest percentages explained variance per emotion were
observed for anger (12.1%) and happiness (9.4%), which were
significantly higher than the percentages for the other emotions
(evaluated using a paired samples t-test, all p < 0.05). The mag-
nitude of the average cross-validated pseudo R2 scores is roughly
proportional to the expected proportion of the population to
show an effect (i.e., a cross-validated pseudo R2 significantly
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Figure 7.5 Cross-validated model performance, shown separately for
each target feature (top: categorical emotion, bottom left: valence, bottom
right: arousal) and feature set (static, dynamic, and combined). The bar
height represents the mean model performance across participants and the
error bars represent ±1 SD. The average within-participant noise ceiling of
the combined feature set is plotted for reference as a dashed black line,
which is surrounded by a grey area indicating ±1 SD.

larger than 0), as is shown in Figure 7.6. The population preva-
lence estimates across emotions range from 23% (for surprise) to
100% (for anger). For the dynamic and combined model, an ef-
fect is expected in the entire population (i.e., a population preva-
lence of 100%).

Valence/arousal models

Relative to the averaged predictive power of the static features
for the categorical emotion model, the predictive power of static
features is higher in the valence model, in which it explains on
average 11.4% of the variance (versus 18.3% using dynamic fea-
tures and 30.0% using the combined feature set). This is sub-
stantially lower in the arousal model, in which negative R2 values
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Figure 7.6 The posterior distributions for the population prevalence pro-
portion of the results from the categorical emotion (top), valence (middle),
and arousal models (bottom). The posteriors for the different emotions with
respect to the dynamic and combined categorical emotion model perfor-
mances completely overlap, so only a single posterior is shown. The filled
area represents the probability density higher than the lower bound of the
96% highest density interval (McElreath, 2020).

are observed when using static features (versus 23.9% using dy-
namic features and 22.9% using the combined feature set). The
computed population prevalence estimates confirm that a statis-
tically significant effect is expected in virtually the entire popu-
lation for all valence and arousal models, with the exception of
the static arousal model, in which an effect is only expected in
30% of the population).
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Reconstruction model visualizations
Using the estimated coefficients from the encoding models, we
estimated the most likely dynamic and static stimulus features
for a given categorical emotion or valence/arousal level. In Fig-
ure 7.7, we visualize these reconstructions.

Categorical emotion reconstructions

Based on a qualitative visual assessment, the reconstructions
from the categorical emotion model based on dynamic infor-
mation conform to the stereotypical facial expressions associ-
ated with categorical emotions (cf. Ekman et al., 1969; Jack et
al., 2016). As can be seen in Figure 7.8, anger is associated with
a jaw drop, narrowing of the face, raised cheeks, and a low-
ered brow; disgust is associated with a raised upper lip, raised
cheeks, and tightened eyelids; fear is associated with a strong jaw
drop and brow raise; happiness is associated with a raised cheeks
(which also widens the face), tightened eyelids, and slightly
raised eyebrows; sadness is associated with pressed lips, widen-
ing of the cheeks, and closed eyes; and surprise is associated
with a jaw drop, narrowing of the face and raised eyebrows. Al-
though no stereotypical face structures have been proposed in
the literature, the majority of the static reconstructions still show
clear and interpretable facial features for most categorical emo-
tions. Anger is associated with a relatively wide face, high fore-
head, and a protruding nose and chin; disgust is associated with
an asymmetric face (in the left-right direction) and protruding
mouth/lips; fear is associated with a relatively narrow face and
turned-up nose, and slightly protruding mouth; happiness is as-
sociated with turned-up mouth corners and high cheekbones;
and sadness is associated with a relatively long face and protrud-
ing eyebrows. We retrain from interpreting the reconstruction
of the static surprise face because static features were not found
to be predictive for surprise (see Figure 7.5).
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In addition to qualitatively assessing the reconstructions
separately, we also compared them quantitatively to each other.
In Figure 7.8 (top left), we visualize the correlation matrix of the
dynamic categorical emotion reconstructions. This correlation
matrix shows relatively high correlations between reconstruc-
tions of “anger” and “disgust” (r = .62) as well as “surprise”
and “fear” (r = .56), which may underlie the relative frequent
confusion between those pairs of emotions (see Supplementary
Figure F.5, top left). The correlation matrix of the static categor-
ical emotion reconstructions (Figure 9, middle left), in contrast,
shows no clear similarities across reconstructions. Finally, we
computed the correlation (for each emotion pair) between the
static and dynamic reconstructions, which indicates the extent
to which static and dynamic share the same “face topology”. If
dynamic and static reconstructions are in fact similar in terms
of face topology, we would expect high values on the diagonal
of the matrix and low values elsewhere. This actual correlation
matrix (Figure 7.8, bottom left), however, does not show this
pattern; all correlations between the dynamic and static recon-
structions are around 0.

Valence/arousal reconstructions

The reconstructions from the dynamic valence model also show
clear facial movements for both highly negative and highly posi-
tive valence values. A face that is experienced as highly negative
is associated with an “inward” jaw drop, narrowing of the face,
and raised cheeks, while a face that is experienced as highly pos-
itive is associated with a widening of the face through the cheeks
and a raised brow. The reconstructions from the model based on
static information shows that faces experienced as highly nega-
tive have a wide (“strong”) jawline, a relatively long face, wide
forehead, and a protruding brow and mouth, while faces experi-
enced as highly positive have a relatively narrow and short fore-
head, high cheekbones and mouth corners, and a relatively “flat”
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Figure 7.7 The results from the Bayesian reconstruction approach for
each emotion from the categorical emotion model and for seven levels, -
0.6, -0.4, -0.2, 0, +0.2, +0.4, and +0.6, of the valence and arousal model,
shown separately for the static and dynamic feature sets. Color saturation
is proportional to the movement or deviation in vertex space (in SD).
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face (i.e., positive deviations in the Z dimension at the edges of
the face).

The reconstructions from the arousal model based on dy-
namic information show that faces eliciting low arousal are as-
sociated with a widening of the face, tightening of the lips, and
tightened/closed eyes, while faces eliciting high arousal are as-
sociated with a strong jaw drop, widening of the eyes, and raised
cheeks. The reconstructions from the arousal model based on
static information, on the other hand, show less interpretable fa-
cial features, which is expected based on the low (below-chance)
model performance of the static arousal model.

As can be seen in figure 7.7, the reconstructed faces
are highly similar across different magnitudes of valence and
arousal, respectively. A strongly positive reconstruction, for ex-
ample, looks almost the same as a weakly positive one. This sug-
gests that the mental representations of these variables seems
to be “binary”, even though the variables were measured on a
continuous (bipolar) scale and the distribution of the ratings is
far from binary (see Supplementary Figure F.2). Moreover, the
“switching point” (corresponding to a neutral mental represen-
tation) is in some cases offset compared to the midpoint of the
rating scale (corresponding to a neutral rating), suggesting a dis-
crepancy between the neutral point of the rating scale and peo-
ple’s mental representation of a “neutral” face. Note that this
phenomenon is less clearly present in the static arousal recon-
structions, but given that the static information was not predic-
tive of arousal ratings, we refrain from interpreting these results.

Finally, given the uniformly low correlation values in the
cross-correlation matrix between dynamic and static recon-
structions of both valence and arousal (Figure 7.8, bottom center
and bottom right), it can be concluded that there does not seem
to be any correspondence in face topology between static and
dynamic representations of valence and arousal.
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Figure 7.8 Correlations between reconstructions in vertex space for the
categorical emotion (left), valence (middle), and arousal (right) models. The
top row shows the correlations across all dynamic reconstructions. Themid-
dle row shows the correlations across all static reconstructions. The bottom
row shows the correlations across each combination of a single dynamic
and static reconstruction (e.g., in the bottom left correlation matrix, the top
right cell represents the correlation between the static anger and the dy-
namic surprise reconstruction).
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Correlations between affective properties

Finally, we evaluated the cross-correlations between the recon-
structions of different affective properties. In other words, we
evaluate correlations between the reconstructions for different
levels of experienced valence and arousal in the observer with
the reconstructions for perceived emotions in the face of the ex-
pressor (e.g., anger). The correlation matrix of the dynamic re-
construction correlations are visualized in Supplementary Fig-
ure F.8 and the correlation matrix of the static reconstruction
correlations are visualized in Supplementary Figure F.9. In these
correlation matrices, a clear pattern emerged. Specifically, pos-
itive valence reconstructions correlated positively with happi-
ness and negative valence reconstructions correlated positively
with negative categorical emotion reconstructions (anger, dis-
gust, and fear). Also, low arousal reconstructions correlated
positively with happiness and sadness and high arousal recon-
structions correlated positively with negative categorical emo-
tion reconstructions (anger, disgust, and fear). Notably, this
pattern is both present in the dynamic reconstructions (Supple-
mentary Figure F.8) and static reconstruction (Supplementary
Figure F.9). These findings may explain the previously discussed
observations that valence and arousal reconstructions seem to
be binary instead of graded. Participants may experience a face
as categorically positive when a face displays happiness and as
categorically negative when a face displays anger, disgust, or
fear. Similarly, participants may experience a face as categori-
cally highly arousing when a face displays anger, disgust, or fear
and as categorically low arousing when a face displays happiness
or sadness.

7.4 Discussion
In the current study, we sought to quantify and disentangle
the importance of dynamic features (facial movement) and
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static features (facial morphology) on affective face perception.
Specifically, using machine learning models based on either dy-
namic features, static features, or a combination thereof, we
aimed to predict categorical emotion, valence, and arousal rat-
ings from a psychophysics experiment with dynamic facial ex-
pression stimuli that randomly varied in both their facial move-
ments and facial morphology. To gain further insight into the fa-
cial features that are important for prediction of the investigated
affective properties, we reconstructed the mental representation
of faces associated with the different categorical emotions and
different levels of experienced valence and arousal using a mul-
tivariate reverse correlation method. In what follows, we discuss
the current study’s main findings and how they may inform and
complement studies on affective face perception.

Facial morphology independently contributes to
affective face perception
Our models were able to predict human ratings of perceived
categorical emotions and elicited valence substantially above
chance level using both dynamic and static features. This
demonstrates that not only dynamic but also static features of the
face determine in what way people perceive and are affected by
facial expressions. Moreover, the sum of the dynamic and static
model performance scores approximately equals the combined
model performance score for all affective properties, which fur-
ther indicates that the static and dynamic feature sets carry in-
dependent information that is integrated during perception.

The findings of this study have both fundamental and prac-
tical implications for (research on) affective face perception. In
general, this study shows that the way we perceive and are af-
fected by faces goes beyond what those faces explicitly commu-
nicate. Because static features are by definition unrelated to the
expressor’s affective state or intentions, one way to frame our
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findings is that people are biased by features related to facial
morphology, perhaps mediated by stereotypes associated with
certain demographic groups (e.g., males are thought to display
anger more frequently than women; Brooks et al., 2018). In
contrast to this interpretation, this “bias” could in fact reflect
a true association between morphological features and the fre-
quency of particular affective expressions (e.g., categorical emo-
tions) or predispositions (e.g., dominance; Zebrowitz, 2017).
For example, research has shown that facial width-to-height ra-
tio (FWHR) is associated with aggressive behavior (Lefevre et
al., 2014), which may mediate the relationship between FHWH
and anger perception (see Figure 7.7; Deska et al., 2018). As this
debate about the accuracy of the association between facial mor-
phology and affective predispositions is far from solved (see e.g.,
Jaeger, Oud, et al., 2020; Jaeger, Sleegers, et al., 2020), we leave
speculation about this topic to future research that more directly
investigates this issue.

On a more practical level, because both static and dynamic
features contribute independently to the perception of categori-
cal emotion and experience of valence, researchers studying cat-
egorical emotion or valence should use dynamic stimuli of facial
expressions instead of static stimuli (i.e., images), which is most
commonly done (Krumhuber et al., 2013). By using dynamic
stimuli, possible effects of static features can be controlled or ex-
plicitly adjusted for. This “decorrelation” of static and dynamic
information is important if one wants to say something about the
(unconfounded) effect of static or dynamic information in affec-
tive face perception. Given our results, dynamic stimuli are also
likely to be more effective for eliciting and modelling arousal,
which is in line with previous studies that show that arousal is
experienced more intensely in response to dynamic than static
stimuli (Sato & Yoshikawa, 2007).
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The influence of facial morphology does not result
from visual similarity to facial movements
Contrary to what is often reported in previous studies (Hess,
Adams, & Kleck, 2009; Said et al., 2009; Zebrowitz, 2017), we
do not find that static and dynamic features visually resemble
each other, as is evident from the low correlations between static
and dynamic reconstructions for each categorical emotion and
valence and arousal levels. Instead, the static reconstructions
show qualitatively different facial features for each emotion and
valence/arousal level relative to the dynamic reconstructions.
For example, the static anger reconstruction shows a relatively
strong jawline (cf. Deska et al., 2018), high forehead, and pro-
truding nose and chin, while the dynamic anger reconstruction
shows a narrowing of the face, raised cheeks, and lowered brow.
Many of the facial features associated with static reconstructions
are similar to facial features associated with social judgments.
For example, the strong jawline we observe in the static anger
reconstruction has been associated with the perception of dom-
inance (Mileva et al., 2014; Windhager et al., 2011) and the pro-
nounced cheekbones we observe in the static happiness recon-
struction has been associated with the perception of trustwor-
thiness (Oosterhof & Todorov, 2009; Todorov et al., 2008). This
suggests that the effect of static features on categorical emotion
perception may be mediated by social attributions such as domi-
nance and trustworthiness (Adams et al., 2012; Craig et al., 2017;
Gill et al., 2014; Hess, Adams, et al., 2009; Montepare & Dobish,
2003). However, the difference between our findings and previ-
ously reported associations between social attributions and cat-
egorical emotion perception (with the exception of Gill et al.,
2014) is that we show that the static features we found to be
important for categorical emotion perception do not resemble
dynamic features usually associated with particular emotion ex-
pressions.
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Categorical representations of experienced
valence and arousal correlate with representations
of perceived emotions
Furthermore, the qualitative and quantitative analyses of the re-
constructions at different valence and arousal levels shows that
even though valence and arousal were measured at a continu-
ous scale, participants seem to represent valence and arousal in
a categorical fashion, i.e., as either positive or negative valence
and as either low or high arousal. An intriguing potential expla-
nation for this finding is that the valence and arousal experiences
of participants may be directly tied to the categorical emotions
perceived in the face. Indeed, for both dynamic and static re-
constructions, the correlations between the positive valence re-
constructions and the happiness reconstruction and the nega-
tive valence reconstructions and the anger, disgust, and fear re-
constructions are substantial (see Supplementary Figure F.8-F.9.
Likewise, the correlations between low arousal reconstructions
and the happiness and sadness reconstructions and high arousal
reconstructions and the anger, disgust, and fear reconstructions
are substantial. Thus, an individual’s affective response to a face
may stem from the face’s similarity to the observer’s representa-
tion of categorical emotions.

Predictive models quantify what is (not yet)
known
The current study used a predictive modelling approach (as op-
posed to null-hypothesis significance testing used in most pre-
vious research) to precisely quantify and compare the impor-
tance of static and dynamic information in affective face percep-
tion. In addition, using the concept of a noise ceiling, we showed
that although a substantial proportion of the variance in rat-
ings can be explained, the difference between the average model
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performance and the noise ceiling indicates that there is room
for improvement. As our models were all linear and additive,
one possibility for improvement is the use of non-linear mod-
els, which may capture possible many-to-one mappings between
facial movements and affective properties (Snoek et al., n.d.).
The recent successes of computer vision algorithms (which are
usually highly non-linear) in emotion classification indicate that
this avenue may be promising (Ko, 2018). Another possibil-
ity for improving predictive model performance is to enrich the
static and dynamic feature spaces. For example, one could con-
sider static features beyond facial morphology, such as facial
texture (Punitha & Geetha, 2013; Xie & Lam, 2009) and color
(Benitez-Quiroz et al., 2018; Thorstenson et al., 2018). Investi-
gating alternative algorithms and additional or different feature
spaces, which can be evaluated by their predictive accuracy, may
generate a more complete and accurate model of affective face
perception.

Limitations and further directions

Although we believe the current study yields important insights
into the role of static and dynamic information in affective face
perception, it suffers from several limitations that affect its gen-
eralizability, which in turn provides directions for future re-
search. First, we specifically investigated categorical emotion as
an affective state of the expressor and valence/arousal as an affec-
tive experience of the observer, but this covers only a part of the
possibilities. Future studies could additionally investigate how
static and dynamic information are related to categorical emo-
tions as an affective state of the observer and valence/arousal as
an affective state of the expressor. Second, although we investi-
gated multiple affective properties of the face, they do not cap-
ture affective face perception in its full complexity. For example,
the six basic categorical emotions we investigated are a subset of
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a larger range of known categorical affective states (Cowen et
al., 2021; Cowen & Keltner, 2017). Future research could use
the approach from the current study to investigate whether the
largely independent contribution of static and dynamic infor-
mation holds for affective states beyond those investigated in the
current study. Second, although our psychophysics approach
samples the space of dynamic and static information more ex-
tensively than most studies, the stimulus set we used remains
limited. Although random sampling of facial movements en-
sures that analyses and subsequent results are relatively unbiased
by existing theoretical considerations (Jack et al., 2017), they
may yield facial expressions that are unlikely to be encountered
in daily life. As a consequence, these facial expressions may be
rated relatively inconsistently and subsequently bias model per-
formance downwards. In addition, our stimulus set was gen-
erated to optimize for variance in facial movements. As such,
while our stimulus set covers a large part of the space of possible
facial movements, it is unclear to what degree the fifty differ-
ent faces in our stimulus set cover the range of variation in fa-
cial morphology. Specifically, to improve the variance in static
features, future studies could benefit from including faces from
different ethnicities and a wider age range, which may in turn
improve generalizability of the results.

7.5 Conclusion
In this study, we show that both dynamic information (i.e., fa-
cial movements) and static information is integrated during af-
fective face perception, and that these sources of information are
largely independent. This finding demonstrates that people ex-
tract more from the face than is intentionally or unintention-
ally communicated. Importantly, these results in general raise
concerns about using static images (rather than videos) in facial
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expression research or automated facial expression recognition
systems, because (apparent) dynamic and static information are
fundamentally confounded in images. We hope that our data-
driven, predictive approach paves the way for future research
that embraces the face as a communicator and elicitor of affec-
tive states in all its complexity.
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Chapter 8

Discussion

Psychology and cognitive neuroscience are relatively young sci-
entific fields. Using the empirical cycle, these fields have devel-
oped and tested many different theories about the human mind
and brain over the years, almost exclusively by means of hy-
pothesis testing. In the past twenty years or so, we have seen
a (renewed) interest in a more computational, predictive ap-
proach that is used in addition and complementary to the tra-
ditional hypothesis testing approach (Yarkoni & Westfall, 2017).
In this thesis, inspired by techniques and models from machine
learning, I explored how this predictive approach can be applied
and adapted to behavioral research (chapter 6 and 7) and neu-
roimaging research (chapter 2 and 3). This thesis also addresses
the importance of large, publicly accessible datasets, an exam-
ple of which is described in chapter 4. Finally, highlighting the
fact that arguably the most effective scientific methodology em-
braces both predictive modelling and hypothesis testing, chap-
ter 5 outlined an example of a fully preregistered, confirmatory
neuroimaging study. In the general introduction to this thesis,
I described how predictive modelling can complement the hy-
pothesis testing approach in psychology and cognitive neuro-
science; in what follows, I will outline what I think is necessary
to facilitate the adoption of this approach.
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An important step in the adoption of a “predictive approach”
is changing the way we derive research questions and hypothe-
ses. The hypothetico-deductive tradition in psychology and cog-
nitive neuroscience has taught us that research questions should
be based on theories that, ideally, can be answered using statis-
tical tests of binary hypotheses (Kellen, 2019). The consequence
of this approach is that research questions only capture a very
specific part of a target system. Instead, I believe we should steer
our research questions towards the mechanisms behind partic-
ular cognitive capacities and behaviors (Rooij & Baggio, 2021).
For example, instead of investigating whether certain categorical
emotions are universally recognized, one could try to construct
a model of emotion recognition and show if and how culture
affects this model (Jack et al., 2009). As chapter 2 in this the-
sis shows, however, studies may feature both hypothesis tests
as well as (elements of) predictive models. I think that if one
aims to adopt a predictive approach, a good rule of thumb is to
ask oneself whether the research question can be answered with
“yes” or “no”; if that is the case, I would recommend to try to
rephrase the question such that the research question revolves
around the word “how” and cannot be answered using a simple
“yes” or “no” answer.

Adopting a more predictive approach also means that we
should perhaps not let theory guide our research as much as in
the hypothesis testing approach. Of course, theories may inspire
elements of predictive models (e.g., constructionism tells us that
we should not limit our models of emotion to perceptual inputs
only; Barrett et al., 2019), but they should not determine all as-
pects of the study design, experiment, and statistical model (Jack
et al., 2017). Instead, the data used for predictive modelling,
whether that is observational or experimental data, should ide-
ally allow for exploration and comparison of different models
(Gelfert, 2016). This way, the “information gain” from a single
experiment or study can be much higher than when conducting
a single hypothesis test.
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The exploratory mindset of the predictive modelling ap-
proach calls for a different way to think about the data that we
use for our models. In hypothesis testing, we usually want to
limit our inferences to a single factor, which we explicitly ma-
nipulate in our experiments. For predictive modelling, on the
other hand, the data should ideally vary in all the dimensions
that are relevant for the capacity or behavior that is investigated.
These “rich” datasets do not only allow for more exploration and
a better generalizability, but are also less constrained (or “bi-
ased”) a priori by existing theories (Jack et al., 2017). Chapter
7 provides an illustrative example of an experimental approach
to create datasets that are relatively rich and unbiased by the-
ory. In this study, we used a “social psychophysics” approach
(Jack & Schyns, 2017) to create facial expression stimuli that
randomly varied in both facial movements (sampled uniformly
from a large set of “action units”) as well as facial morphology
(sampled from a large database of individuals). This allowed us
to explore different models based on dynamic features (i.e., fa-
cial movement) and compare these two models based on static
features (i.e., facial morphology).

The development of such rich datasets, however, may pose
practical problems. One prominent issue is that, with each
additional dimension that is considered, the space of the data
grows exponentially, a phenomenon known as the “curse of di-
mensionality”. With increasingly higher dimensional spaces,
randomly sampling data quickly becomes practically infeasible.
One solution for this issue is to constrain the (co)variance of the
data using prior information, like we did in chapter 7 by restrict-
ing facial movements to those that have been consistently shown
to be important in affective face perception. For observational
data, constraints on (random) sampling can also be achieved by
the use of “naturalistic” or “ecologically valid” data, which has
been increasingly popular in cognitive neuroscience (Nastase et
al., 2020).
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Rich and naturalistic datasets by themselves are, however,
not enough. Like machine learning researchers have done in
computer vision with datasets such as ImageNet, we should
strive to collaboratively create large, rich, and importantly pub-
licly available datasets that can be used as benchmarks for the
development and evaluation of predictive models. An impor-
tant prerequisite for this endeavor is that research communi-
ties can agree on which particular cognitive capacity or behavior
should be targeted, how to operationalize this, and which stim-
ulus or task dimensions should be sampled (Adjerid & Kelley,
2018). Although focused on hypothesis testing instead of pre-
dictive modelling, initiatives such as the Psychological Science
Accelerator (Moshontz et al., 2018) and the different ManyLabs
projects (Ebersole et al., 2016; Klein et al., 2018) have shown
that such large-scale efforts are possible. Moreover, I think that
competitions and challenges centered around these benchmark
datasets can lead to rapid progress in explanation and under-
standing of specific cognitive capacities and behaviors, like Im-
ageNet has done for object recognition.

The development of rich datasets afford the use of more
complex predictive models, which in my opinion are neces-
sary to capture the complex, high-dimensional nature of cogni-
tive capacities and behavior (Jolly & Chang, 2019). Complex-
ity, here, can mean two things. One interpretation of model
complexity refers to the high dimensionality of models, i.e.,
models that work with data with many predictors. These high-
dimensional inputs may either be directly measured or compu-
tationally derived from the data, which are subsequently related
to the target variable using a (linear) model. An example of
the former strategy in the context of neuroimaging is a “decod-
ing model”, which aims to relate high-dimensional patterns of
brain data to experimental features (see Chapter 2 and 3). In
my opinion, the latter strategy that uses a computational model
to explicitly derive model features is more promising. In cog-
nitive neuroscience, such computational models are known as
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“linearizing models” (Naselaris et al., 2011), because the model
relates features resulting from a potentially non-linear computa-
tional model to the target variable using a linear model (i.e., the
approach linearizes the mapping from input to the target vari-
able). We used this approach in chapter 7, in which we used a
computational model from computer vision (a 3D morphable
model; Yu et al., 2012) to generate facial shape features which
were subsequently used to predict categorical emotion, valence,
and arousal ratings using a logistic regression model.

Another, and more common, interpretation of model com-
plexity is related to the number of model parameters. In the past,
models usually limited the number of parameters to prevent
overfitting, but the increase in available data and compute power
in the 21st century enabled training models with an increasingly
larger number of parameters. The most popular class of models
resulting from these developments are known as “deep learn-
ing” models, a type of artificial neural network that maps inputs
to outputs using a series of non-linear transformations (LeCun
et al., 2015). Deep learning models represent the state-of-the-
art in almost all domains of artificial intelligence, including ob-
ject recognition, reinforcement learning, and natural language
processing (Maas et al., 2021). In cognitive neuroscience, too,
deep learning models tend to outperform traditional computa-
tional vision models in predicting neural activity in response to
visual stimuli (Khaligh-Razavi & Kriegeskorte, 2014; Kriegesko-
rte, 2015).

As discussed in the general introduction to this thesis, using
complex predictive models trained on observational data may
feel like trading in one black box (the brain/mind) for another
(a model), which does not yield an improved understanding of
the investigated target system. This trade-off between predic-
tion and explanation is to some extent unavoidable but, I would
argue, a trade-off worth making. I would rather have a black
box with 90% accuracy than a directly interpretable model with
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10% accuracy. The reason for this preference stems from the
fact that a highly predictive model can be used as a “surrogate”
(or model organism; Scholte, 2018) of the target system, which
can be inspected, manipulated, and experimented with in order
to explain and gain understanding of it. With decades of expe-
rience with experimentation and deriving causal insights from
empirical research, I think that psychologists and cognitive neu-
roscientists are superbly equipped for this role.

The development of a research climate that combines the
strengths of both the predictive and the hypothesis testing ap-
proach is not something that will happen overnight. The pre-
dictive approach represents more than a choice of model. It re-
quires a different type of experimental cycle, which revolves less
on theory and hypotheses and more on exploration and post-
hoc explanation. If we choose to focus more on prediction, we
have to start asking different questions (about mechanisms, not
effects); we have to embrace the complexity of human cogni-
tion and behavior and build datasets and models that reflect this
complexity; and we have to sacrifice interpretability for accu-
racy. Like any break with tradition, this may feel uncomfort-
able at first, but in doing so, I believe that a promising future lies
ahead.
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Appendix A

Supplement to Chapter 2

Table A.1 Stimuli used for SF-task

Class Dutch English translation

Action Hard wegrennen Running away fast

Iemand wegduwen Pushing someone away

Iemand stevig vastpakken Holding someone tightly

Je hoofd schudden Shaking your head

Heftige armgebaren maken Making big arm gestures

Ergens voor terugdeinzen Recoiling from something

Je ogen dichtknijpen Closing your eyes tightly

Je ogen wijd open sperren Opening your eyes widely

Je wenkbrauwen fronsen Frowning with your
eyebrows

Je schouders ophalen Raising your shoulders

Op de vloer stampen Stamping on the floor

In elkaar duiken Cowering

Je schouders laten hangen Slumping your shoulders

Je vuisten ballen Tighten your fists

Je borst vooruit duwen Push your chest forward
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Je tanden op elkaar zetten Clench your teeth

Je hand voor je mond slaan Put your hand in front of
your mouth

Onrustig bewegen Moving restlessly

Heen en weer lopen Walking back and forth

Je hoofd afkeren Turning your head away

Interoception Een brok in je keel A lump in your throat

Buiten adem zijn Being out of breath

Een versnelde hartslag A fast beating heart

Je hart klopt in de keel You heart is beating in
your throat

Een benauwd gevoel An oppressed feeling

Een misselijk gevoel Being nauseous

Druk op je borst A pressure on your chest

Strak aangespannen
spieren

Tense muscles

Een droge keel A dry throat

Koude rillingen hebben Cold shivers

Bloed stroomt naar je
hoofd

Blood is going to your
head

Een verdoofd gevoel A numb feeling

Je hebt tintelende
ledenmaten

Tingling limbs

Een verlaagde hartslag A slow heartbeat

Je hebt zware ledematen Heavy limbs

Een versnelde ademhaling Fast breathing

Je hebt hoofdpijn Headache

Je hebt buikpijn Stomachache

Zweet staat in je handen Sweaty palms
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Je maag keert zich om Your stomach churns

Situation Vals beschuldigd worden Being falsely accused

Dierbare overlijdt A loved one dies

Vlees is bedorven Meat that has gone off

Je wordt bijna aangereden You are almost hit by a car

Iemand naast je braakt Someone next to you
vomits

Huis staat in brand House is on fire

Zonder reden ontslagen
worden

Being fired for no reason

Een ongemakkelijke stilte An uncomfortable silence

Alleen in donker park Alone in a dark park

Inbraak in je huis A house burglary

Een gewond dier zien Seeing a wounded animal

Tentamen verknallen Messing up your exam

Je partner bedriegt je You partner cheats on you

Dierbare is vermist A loved one is missing

Belangrijke sollicitatie
vergeten

Forgot a job interview

Onvoorbereid presentatie
geven

Giving a presentation
unprepared

Je baas beledigt je Your boss offends you

Goede vriend negeert je A good friend neglects you

Slecht nieuws bij arts Bad news at the doctor

Bommelding in metro A bomb alarm in the
metro
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Note:
The stimulus materials presented in Table S1 were selected from a pilot
study. In this pilot study we asked an independent sample of twenty-four
subjects to describe how they would express an emotion in their behav-
ior, body posture or facial expression (action information), what specific
sensations they would feel inside their body when they would experience
an emotion (interoceptive information), and for what reason or in what
situation they would experience an emotion (situational information).
These three questions were asked in random order for twenty-eight differ-
ent negative emotional states, including anger, fear, disgust, sadness, con-
tempt, worry, disappointment, regret and shame. The descriptions gener-
ated by these subjects were used as qualitative input in order to create our
stimulus set of twenty short sentences that described emotional actions,
sensations or situations. With this procedure, we ensured that our stimu-
lus set held sentences that were validated and ecologically appropriate for
our sample.

Full instruction for the other-focused emotion under-
standing task.

Translated from Dutch; task presented first.
”In this study we are interested in how the brain responds

when people understand the emotions of others in different
ways. In the scanner you will see images that display emotional
situations, sometimes with multiple people. In every image one
person will be marked with a red square. While viewing the im-
age we ask you to focus on the emotion of that person in three
different ways.

With some images we ask you to focus on HOW this per-
son expresses his or her emotion. Here we ask you to identify
expressions in the face or body that are informative about the
emotional state that the person is experiencing.

With other images we ask you to focus on WHAT this person
may feel in his or her body. Here we ask you to identify sensa-
tions, such as a change in heart rate, breathing or other internal
feeling, that the person might feel in this situation.

With other images we ask you to focus on WHY this person
experiences an emotion. Here we ask you to identify a specific
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reason or cause that explains why the person feels what he or she
feels.

Every image will be presented for six seconds. During this
period we ask you to silently focus on HOW this person ex-
presses emotion, WHAT this person feels in his/her body, and
WHY this person feels an emotion.

Before you will enter the scanner we will practice. I will show
you three images and will ask you to perform each of the three
instructions out loud.

It is important to note that there are no correct or incorrect
answers, it is about how you interpret the image. For the success
of the study it is very important that you apply the HOW, WHAT
or WHY instruction for each image. Please do not skip any im-
ages and try to apply each instruction with the same motivation.
It is also important to treat every image separately, although it
is possible that you have similar interpretations for different im-
ages. The three instructions are combined with the images in
blocks. In every block you will see five images with the same in-
struction. Each block will start with a cue that tells you what to
focus on in that block.

Each image is combined with all three instructions, so you
will see the same image multiple times. In between images you
will sometimes see a black screen for a longer period of time.

Do you have any questions?”

Full instruction for the self-focused emotion imagery
task.

Translated from Dutch; task presented second.
”In this study we are interested in how the brain responds

when people imagine different aspects of emotion. In the scan-
ner you will see sentences that describe aspects of emotional ex-
perience. We ask you to try to imagine the content of each sen-
tence as rich and detailed as possible.
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Some sentences describe actions and expressions. We ask
you to imagine that you are performing this action or expres-
sion. Other sentences describe sensations or feelings that you
can have inside your body. We ask you to imagine that you are
experiencing this sensation or feeling. Other sentences describe
emotional situations. We ask you to imagine that you are expe-
riencing this specific situation.

We ask you to always imagine that YOU have the experience.
Thus, it is about imagining an action or expression of your body,
a sensation inside your body, or a situation that you are part of.

I will give some examples now.
For each sentence you have six seconds to imagine the con-

tent. All sentences will be presented twice. In between sentences
you will sometimes see a black screen for a longer period of time.
For this experiment to succeed it is important that you imagine
each sentence with the same motivation, even if you have seen
the sentence before. Please do not skip sentences.

Do you have any questions?”
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Figure A.1 Mean percentage of trials successfully executed for the SF-
task (left panel) and OF-task (right panel). Error bars indicate 95% con-
fidence intervals. A one-way ANOVA of the success-rates of the SF-task
(left-panel) indicated no significant overall differences, F (2, 17) = 1.03, p =
0.38. In the OF-task (right panel) however, a one-way ANOVA indicated that
success-rates differed significantly between classes, F (2, 17) = 17.74, p <
0.001. Follow-up pairwise comparisons (Bonferroni corrected, two tailed)
revealed that interoception-trials (M = 74.00, SE = 2.10) were significantly
less successful (p < 0.001) than both action-trials (M = 85.50, SE = 1.85)
and situation trials (M = 90.00, SE = 1.92).
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Figure A.2 Results of the parameter-optimization procedure. Reported scores reflect the classification scores averaged
over subjects and classes (i.e. the diagonal of the confusion matrix). All optimization analyses were iterated 5000 times. A)
Classification results for different smoothing kernels (0, 2, 5, and 10 mm) and z-value threshold for differentiation scores during
feature selection (see MVPA pipeline section in the main text for a description of the particular feature selection method we
employed). Numbers reflect the average number of voxels selected across iterations. B) Classification results of using a low-
pass filter (2 seconds) or not. C) Classification results for different numbers of test-trials per class (1 to 5). D) Classification
results when preprocessing the data with Independent Component Analysis (ICA) or not.



Table A.2 Parameters assessed in the optimization set

Parameter Options Final choice

Smoothing kernel 0 mm, 2 mm, 5 mm,
10 mm

5 mm

Feature selection
threshold

1.5, 1.75, 2, 2.25, 2.5,
2.75, 3

2.3

Number of test-trials 1, 2, 3, 4, 5 4

Low-pass filter 2 seconds vs. none None

ICA denoising ICA vs. no ICA No ICA

Note: The first set of parameters we evaluated in the optimization-
set were different smoothing factors and feature selection thresholds (see
MVPA pipeline section in the main text). On average, across the self- and
cross-analysis, a 5 mm smoothing kernel yielded the best results in combi-
nation with a feature selection threshold of 2.25, which we rounded up to
2.3 as this number represents a normalized (z-transformed) score, which
corresponds to the top 1% scores within a normal distribution. Next, the
difference between using a low-pass (of 2 seconds, i.e. 1 TR) versus none
was assessed, establishing no low-pass filter as the optimal choice. Next,
different numbers of test-trials (1 to 5) per class per iteration were as-
sessed. Four trials yielded the best results. Lastly, the effect of “cleaning”
the data with an independent component analysis was examined (FSL:
MELODIC and FIX; Salimi-Khorshidi et al., 2014). Not performing ICA
yielded the best results. These parameters – 5 mm smoothing kernel, 2.3
feature selection thresholded, no low-pass filter, and four test-trials per it-
eration – were subsequently used in the analysis of the validation set.

Here, patterns are estimated in a GLM in which each con-
dition, as opposed to each trial, is modeled with a single regres-
sor, from which whole-brain t-value patterns were extracted. In
this condition-average multi-voxel pattern analysis, condition-
average patterns across subjects were used as samples. The
condition-average patterns were extracted from the univariate
first-level contrasts. In total, this yielded 120 samples for the
self-data (3 conditions x 2 runs x 20 participants) and 60 sam-
ples for the other-data (3 conditions * 20 participants). For these
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Figure A.3Confusion matrices displaying precision-values yielded by the
classification analysis of the optimization dataset with the final set of param-
eters. Because no permutation statistics were calculated for the optimiza-
tion set, significance was calculated using a one-sample independent t-test
against chance-level classification (i.e. 0.333) for each cell in the diagonal of
the confusion matrices. Here, all t-statistics use a degrees of freedom of 12
(i.e. 13 subjects - 1) and are evaluated against a significance level of 0.05,
Bonferroni-corrected. For the diagonal of the self-analysis confusion matrix,
all values were significantly above chance-level, all p < 0.0001. For the di-
agonal of the cross-analysis confusion matrix, both the action (43% correct)
and situation (44% correct) classes scored significantly above chance, p =
0.014 and p = 0.0007 respectively. Interoception was classified at chance
level, p = 0.99, which stands in contrast with the results in the validation-set.

analyses, the same hyperparameters were used as the original
analyses reported in the main text, except with regard to the
cross-validation and bagging procedure. Here, we used (strati-
fied) 10-fold cross-validation without bagging. The upper panels
show precision scores (per class) for the self- and (self-to-other)
cross-analysis; the lower panels show results from the same anal-
yses but expressed in recall-estimates (error bars indicate 95%
confidence intervals). Apart from interoception in the cross-
analysis (both precision and recall), all scores were significant
(p < 0.001) in a permutation test with 1000 permutations. These
results largely replicate our findings as reported in the main text.
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Trial 1
(ytrue= Act)

Trial n
(ytrue = Sit)

Keep track of class 
probabilities across 
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Act, Int, Sit
0.4, 0.1, 0.5
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Trial 2
(ytrue = Int)

(1) 

(2) 
Determine final class 
prediction through 
'soft-voting' (argmax over 
summed probabilities)

(3) 
Construct a confusion 
matrix with (here) 
precision values using the 
final class predictions

Figure A.4 Schematic overview of the bagging procedure. Class prob-
abilities across different bagging iterations are summed and the class with
the maximum probability determines each trial’s final predicted class, which
are subsequently summarized in a confusion matrix on which final re-
call/precision scores are calculated.
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Figure A.5 A comparison between precision and recall confusion ma-
trices of the self- and cross-analysis of the validation dataset. Precision
refers to the amount of true positive predictions of a given class relative
to all predictions for that class. Recall refers to the amount of true posi-
tive predictions of a given class relative to the total number of samples in
that class. In the self-analysis, all classes were decoded significantly above
chance for both precision and recall (all p < 0.001). In the cross-analysis,
all classes were decoded significantly above chance for precision (all p <
0.001); for recall both action and situation were decoded significantly above
chance (p = 0.0013 and p < 0.001, respectively), while interoception was
decoded below chance. All p-values were calculated using a permutation
test with 1300 permutations (as described in the Methods section in the
main text). When comparing precision and recall scores for both analyses,
precision and recall showed very little differences in the self-analysis, while
the cross-analysis shows a clear difference between metrics, especially for
interoception and situation. For the interoception class, the relatively high
precision score (44%) compared to its recall score (14%) suggests that tri-
als are very infrequently classified as interoception, but when they are, it
is (relatively) often correct. For the situation class, the relatively high recall
score (72 %) compared to its precision score (44%) suggests that situa-
tion is strongly over-classified, which is especially clear in the lower-right
confusion matrix, which indicates that 59% of the interoception-trials are
misclassified as situation-trials.
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Figure A.6 Relation between self- and cross-analysis scores across sub-
jects and their respective distributions. Note that the scores here represent
the average of the class-specific precision scores. A) There is no signifi-
cant correlation between precision-scores on the self-analysis and the cor-
responding scores on the cross-analysis, r = -0.04, p = .86, implying that
classification scores in the self-analysis is not predictive of scores in the
cross-analysis. B) The distribution of precision-scores in the self-analysis,
appearing to be normally distributed. C) The distribution of precision-scores
in the cross-analysis, on the other hand, appears to be bimodal, with one
group of subjects having scores around chance level (0.333) while another
group of subjects clearly scores above chance level (see individual scores
and follow-up analyses in (ref:fig-shared-states-S4).
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Figure A.7 Confusion matrices with precision (left matrix) and recall (right
matrix) estimates of the other-to-self decoding analysis. The MVPA-pipeline
used was exactly the same as for the (self-to-other) cross-analysis in the
main text. P-values corresponding to the classification scores were calcu-
lated using a permutation analysis with 1000 permutations of the other-to-
self analysis with randomly shuffled class-labels. Similar to the self-to-other
analysis, the precision-scores for all classes in the other-to-self analysis
were significant, p(action) < 0.001, p(interoception) = 0.008, p(situation) <
0.001. For recall, classification scores for action and interoception were sig-
nificant (both p < 0.001), but not significant for situation (p = 0.062). The
discrepancy between the self-to-other and other-to-self decoding analyses
can be explained by two factors. First, the other-to-self classifier was trained
on fewer samples (i.e. 90 trials) than the self-to-other classifier (which was
trained on 120 trials), which may cause a substantial drop in power. Sec-
ond, the preprocessing pipeline and MVPA hyperparameters were opti-
mized based on the self-analysis and self-to-other cross-analysis. Given
the vast differences between the nature of the self- and other-data, these
optimal preprocessing and MVPA hyperparameters for the original analyses
may not cross-validate well to the other-to-self decoding analysis.
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Figure A.8 Results of MVPA analyses using condition-average voxel pat-
terns across subjects instead of single-trial patterns within subjects.

This suggests that the neural patterns involved in self-focused
emotional imagery and other-focused emotion understanding
are relatively consistent in terms of spatial distribution across
subjects. We explain this consistency by assuming that our tasks
engage domain-general psychological processes that are present
in all individuals.
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Table A.3 Mean general classification scores per subject for the self- and
cross-analysis on the validation-set only.

Subject nr. Self-
analysis

precision

Cross-
analysis

precision

Session Part of
optimization-
set?

1 0.758 0.445 2 y

2 0.487 0.336 2 y

3 0.629 0.316 1 y

4 0.524 0.577 2 y

5 0.457 0.492 1 y

6 0.741 0.296 2 y

7 0.600 0.542 1 y

8 0.431 0.240 2 y

9 0.629 0.497 1 y

10 0.734 0.268 2 y

11 0.683 0.386 1 y

12 0.415 0.525 2 y

13 0.623 0.604 1 y

14 0.810 0.610 1 n

15 0.538 0.578 1 n

16 0.486 0.455 1 n

17 0.549 0.415 1 n

18 0.488 0.494 1 n

19 0.590 0.289 1 n

20 0.600 0.502 1 n
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Note: Supplementary Table 3 suggests individual variability in the ex-
tent to which neural resources are shared between self- and other-focused
processes. In the SF-task all subjects demonstrated a mean classification
score well above .33 (i.e., score associated with chance). When generaliz-
ing the SF-classifier to the OF-task, however, the classification scores ap-
pear to be bimodally distributed (see Supplementary Figure 5C). As can be
seen in Table 3, some subjects demonstrated a relatively high mean classi-
fication score (i.e., > .45), whereas other subjects demonstrated a classifi-
cation score at chance level or lower. Note that there is no significant dif-
ference between the OF classification scores for subjects who participated
in the experiment for the first or second time (“Session” column in table;
*t*(18) = 1.73, p = 0.10), nor for subjects who were or were not part of the
optimization-set (“Part of optimization-set?” column in table; *t*(18) = -
.95, p = 0.35), suggesting that inclusion in the optimization-set or session
ordering is not a confound in the analyses. Regarding individual variabil-
ity in self-other neural overlap, it is important to note that in the field of
embodied cognition, there is increasing attention for the idea that simu-
lation is both individually and contextually dynamic (Oosterwijk & Bar-
rett, 2014; Winkielman, Niedenthal, Wielgosz & Kavanagh, 2015; see also
Barrett, 2009). To better distinguish between meaningful individual vari-
ation and variation due to other factors (e.g., random noise), future re-
search should test a priori formulated hypotheses about how and when
individual variation is expected to occur.

Table A.4 Most important voxels in terms of their average weight across
iterations and subjects.

Brain
region

k Max Mean Std

Frontal pole 1827 5.05 2.35 0.52

Occipital
pole

1714 5.15 2.45 0.56

Supramarginal
gyrus
anterior

1573 7.48 2.84 0.91
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Lateral
occipital
cortex
superior

1060 4.52 2.18 0.39

Lateral
occipital
cortex
inferior

923 4.73 2.36 0.49

Angular
gyrus

856 4.52 2.24 0.40

Supramarginal
gyrus
posterior

806 4.49 2.29 0.45

Middle
temporal
gyrus
temporo-
occipital

798 4.00 2.33 0.48

Temporal
pole

711 4.38 2.37 0.54

Precentral
gyrus

568 3.54 2.14 0.31

Superior
temporal
gyrus
posterior

549 3.64 2.27 0.41

Superior
frontal
gyrus

510 3.83 2.18 0.38

Postcentral
gyrus

489 4.61 2.43 0.60

Inferior
frontal
gyrus pars-
triangularis

488 4.22 2.35 0.50
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Inferior
frontal
gyrus
parsoper-
cularis

441 3.54 2.14 0.31

Middle
temporal
gyrus
posterior

417 5.68 2.34 0.52

Occipital
fusiform

400 4.28 2.14 0.37

Middle
temporal
gyrus
anterior

398 5.68 2.58 0.76

Middle
frontal
gyrus

300 3.01 2.06 0.25

Precuneus 282 3.34 2.14 0.31

Note: Brain regions were extracted from the Harvard-Oxford (bilat-
eral) Cortical atlas. A minimum threshold for the probabilistic masks of
20 was chosen to minimize overlap between adjacent masks while maxi-
mizing coverage of the entire brain. The column *k* represents the abso-
lute number of above-threshold voxels in the masks. The columns *Max*,
*Mean*, and *Std* represent the maximum, mean, and standard devia-
tion from the *t*-values included in the masks. Note that the *t*-values,
corresponding to the mean weight across subjects normalized by the stan-
dard error of the weights across subjects (after correcting for a positive bias
when taking the absolute of the weights), were thresholded at a minimum
of 1.75, referring to a *p*-value of 0.05 of a one-sided *t*-test against zero
with 19 degrees of freedom (i.e. *n* – 1). Note that this *t*-value map
was not corrected for multiple comparisons, and is intended to visualize
which regions in the brain were generally involved in our sample of sub-
jects. The *X*, *Y*, and *Z* columns represent the MNI152 (2mm) coor-
dinates of the peak (i.e. max) *t*-value for each listed brain region.
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Appendix B

Supplement to Chapter 3

The following supplementary methods describe the methods for
the additional analyses done related to controlling for confounds
in decoding analyses of (simulated) fMRI data and the valida-
tion of using linear confound models for brain size. All code for
these simulations, analyses, and results for the fMRI-related sec-
tions can be found in functional_MRI_simulation.ipynb
notebook. The code for the validation of linear
confound models can be found in the notebook
empirical_analysis_gender_classification.ipynb.
Both notebooks are stored in the project’s Github repository
(https://github.com/lukassnoek/MVCA).

B.1 Supplementary methods

Functional MRI simulation
Rationale

The simulations of fMRI data as described here are meant to
test the efficacy of our proposed methods for confound control
(CVCR) and those proposed by others (“Control for confounds
during pattern estimation”; Woolgar et al., 2014) when applied
to fMRI data instead of structural MRI data, as we did in the
main text. One reason to suspect differences in how these meth-
ods behave between structural and functional MRI data is that
we need to estimate the feature patterns (X) from time series for
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B.1. Supplementary methods

fMRI data while the feature patterns in structural MRI data are
readily available. Moreover, samples in pattern analyses of fMRI
data are often correlated (due to temporal autocorrelation in the
fMRI signal) while it is reasonable to believe that structural MRI
yields independent samples (often individual subjects).

Generation of the data (X, y, C)

In these simulations, we generated fMRI time series data across
a grid of “voxels” (K) which may or may not activate in trials
from different conditions. Additionally, we allow for the addi-
tive influence of a confounding variable with a prespecified cor-
relation to the target variable (corresponding to the “additive”
model from Woolgar et al., 2014). In short, we generate voxel
signal (s) as a function of both true effects of the trials from dif-
ferent conditions (βX), the effect of the confound (βC), and au-
tocorrelated noise (ε):

s = XβX + CβC + ε, ε ∼ N (0, V) (B.1)

where V specifies the covariance matrix of a signal autocor-
related as described by to an AR(1) process (we use φ1 = 0.5).
Note that, here, X and C refer to time-varying (HRF-convolved)
predictors instead of, as in in the main text, arrays of features
(voxels) across different samples. In this simulation, we evalu-
ate two types of MVPA approaches. In the first approach, which
we call “trial-wise decoding”, an activity pattern is estimated for
each trial separately using the least-squares all technique (LSA;
Abdulrahman & Henson, 2016). In LSA, each trial gets its own
regressor in a first-level GLM. This approach is often used when
there is only a single fMRI run available. In the second approach,
which we call “run-wise decoding”, an activity pattern is esti-
mated for each condition separately. Now, suppose one acquires
a single run with two conditions and twenty trials per condition.
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In the trial-wise decoding approach, one would estimate the pat-
terns of 40 trials (twenty for condition 1 and twenty for condi-
tion 2). Alternatively, suppose that one acquires ten runs with
two conditions and again twenty trials per run. In the run-wise
decoding approach, one would estimate in total twenty patterns
(ten for condition 1 and ten for condition 2).

Formally, for I trials across P conditions, X is ultimately of
shape T (timepoints) ×(I × P + 1) in the trial-wise decoding
approach and T × (P + 1) in the run-wise decoding approach
(the +1 refers to the addition of an intercept). In our trial-wise
simulations, we simulate 40 trials (I) across 2 conditions (P). In
our run-wise simulations, we simulate 40 trials across 2 condi-
tions in 10 runs. Note that the length of the fMRI run is au-
tomatically adjusted to the number of trials (I), conditions (P),
trial duration, and interstimulus interval (ISI); increasing any of
these parameters will increase the length of the run. We use a
trial duration of 1 second and a jittered ISI between 4 and 5 sec-
onds (mean = 4.5 seconds).

The initial (non-HRF-convolved) confound (C, with shape
N×1) is generated with a prespecified correlation to the target (y)
by adding noise (ε) drawn from a standard normal distribution
multiplied by a scaling factor (γ):

C = y + γε (B.2)
This process starts with a very small scaling factor (γ). If the

correlation between the target and the confound is too high, the
scaling factor is increased and the process is repeated, which is
iterated until the desired correlation has been found. The con-
found is then scaled from 0 to 1 using min-max scaling. After
scaling, similar to the single-trial regressors (Xj), the confound
(C) is also convolved with an HRF (the SPM default), represent-
ing a regressor which is parametrically modulated by the value
of the confound for each trial (which could represent, for exam-
ple, reaction time). The confound, C, now represents a time-
varying array of shape T × 1. This process is identical for the
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trial-wise and run-wise decoding approaches. However, when
evaluating the efficacy of confound regression (as explained in
the next section) in the context of run-wise decoding, we used
the means per condition of the confound instead of the trial-wise
confound values.

The simulation draws the true activation parameters for the
trials from different conditions (y ∈ {0, 1} for P = 2) from
a normal distribution with a specified mean and standard de-
viation. To generate null data (i.e., without any true difference
across, e.g., two conditions), we generate the true parameters as
follows:

βX(y=p) ∼ N (μ, σ) (B.3)

where, in the case of null data, μ represents the same mean
for all conditions p = 0, . . . , P − 1. The weight of the confound
(βC) is also drawn from a normal distribution with a prespecified
mean (μC) and standard deviation (σC):

βC ∼ N (μC, σC) (B.4)

The weights for both X and C are drawn independently for
the K voxels (we use 10×10 = 100 voxels for all our simulations).
However, to simulate spatial autocorrelation in our grid of arti-
ficial voxels, we smooth all T 2D “volumes” (of shape

√
K×

√
K)

separately with a 2D Gaussian smoothing kernel with a prespec-
ified standard deviation. For our simulations, we use a standard
deviation of 1 for the kernel.

Estimating activity patterns from the data

After generating the signals (s) of shape T × K (in which the 2D
voxel dimension has been flattened to a single dimension), the
“activity” parameters (β̂X) for the trials (for trial-wise decoding)
or conditions (for run-wise decoding) are estimated across all K
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voxels. We estimate these parameters using a generalized least
squares (GLS) model on y using the design matrix X and covari-
ance matrix V:

β̂X = (XTV−1X)−1XTV−1y (B.5)

where β̂X is of shape N × K (where N refers to the amount
of trials in trial-wise decoding and the amount of conditions in
run-wise decoding). Note that C is not part of the design ma-
trix X, here. This would amount to the “control for confounds
during pattern estimation” discussed in Supplementary Meth-
ods section “Controlling for confounds during pattern estima-
tion”. Before entering these activity estimates (β̂X) in our de-
coding pipeline, we divide these them by their standard error to
generate t-values (as advised in Misaki et al., 2010):

tβ̂X
= β̂X√

σ2diag(XTV−1X)−1
(B.6)

where σ2 is the sum-of-squares error divided by the degrees
of freedom (T − N − 1).

To summarize, in all of our simulations, we keep the follow-
ing “experimental” parameters constant: we simulate data from
two conditions (y ∈ {0, 1}, which we refer to as “condition 0”
and “condition 1”), each condition has 40 trials, trial duration
is 1 second, ISIs are jittered between 4 and 5 seconds (mean =
4.5), noise is autocorrelated according to an AR(1) process (with
φ1 = 0.5), and the data is spatially smoothed using a Gaussian
filter with a standard deviation of 2 across a 10×10 grid of voxels.
For run-wise decoding, we simulate 10 runs.

Testing confound regression on simulated fMRI
data
In this simulation, we aim to test whether confound regres-
sion is able to remove the influence of confounds in fMRI data
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for both trial-wise and run-wise decoding analyses. Similar to
the analyses reported in the main article, we contrast WDCR
and CVCR, expecting that WDCR leads to similar negative bias
while CVCR leads to similar (nearly) unbiased results. We use
the same pipeline as in the other simulations, which consists of
a normalization step to ensure that each feature has a mean of
zero and a unit standard deviation, and a support vector clas-
sifier with a linear kernel (regularization parameter C = 1).
The decoding pipeline uses a 10-fold stratified cross-validation
scheme. For the run-wise decoding analyses, this is equivalent
to a leave-one-run-out cross-validation scheme. Model perfor-
mance in this simulation is reported as accuracy (as there is no
class imbalance). The simulation was repeated 10 times for ro-
bustness.

Specifically, we evaluate and report model performance af-
ter confound regression both in the trial-wise decoding and
run-wise decoding context and for different strengths of the
correlation between the target and the confound (rCy ∈
{0, 0.1, . . . , 0.9, 1}). Because arguably the temporal autocorre-
lation of fMRI data is the most prominent difference between
fMRI and structural MRI data, and thus might impact decod-
ing analyses differently (Gilron et al., 2016), we additionally test
CVCR on data that differs in the degree of autocorrelation. We
manipulate autocorrelation by temporally smoothing the signals
(y) before fitting the first-level GLM using a Gaussian filter with
increasing widths (σfilter = {0, 1, . . . , 5}), yielding data with in-
creasing autocorrelation. We used a grid of 4 × 4 voxels for this
simulation to reduce computation time.

Controlling for confounds during pattern
estimation
As discussed in the main text, one way to potentially control for
confounds in fMRI data is to remove their influence when esti-
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mating the activity patterns in an initial first-level model (Wool-
gar et al., 2014). In this section of the Supplementary methods,
we tested the efficacy of this method on simulated fMRI data in
both trial-wise decoding and run-wise decoding contexts. Note
that the original article on this method (Woolgar et al., 2014)
performed run-wise decoding.

Specifically, we tested whether confounds can be controlled
by adding the (HRF-convolved) confound to the design matrix
X in the first-level pattern estimation procedure. According to
Woolgar et al. (2014), when assuming that the confound has a
truly additive effect, adding the confound to the design matrix
will yield (single-trial) pattern estimates (β̂XX) that only cap-
ture unique variance (i.e., no variance related to the confound).
In our simulations, we tested two versions of this method. In
one version, which we call the “default” version, the confound
is added to the design matrix and the (GLS) model is estimated
on using the design-matrix including both the single-trial (for
trial-wise decoding) or condition regressors (for run-wise de-
coding) and the confound regressor. In the other version, which
we call the “aggressive” version (reflecting the same terminol-
ogy as the fMRI-denoising method “ICA-AROMA”; Pruim et al.,
2015), the confound regressor is first regressed out of the signal
(scorr = s−Cβ̂C) before fitting the regular first-level model using
the design matrix (X) without the confound regressor. The rea-
son for testing these two methods is because it is unclear from
the original Woolgar et al. articles (Woolgar et al., 2011, 2014)
which version was used and whether the two versions yield dif-
ferent results.

In our simulation, we varied the correlation between the
(non-HRF-convolved) confound and the target (here, y ∈
{0, 1}). Importantly, we generated data without any effect, i.e.,
the parameters of the trials from the two different conditions
(βX|y=0 and βX|y=1) were (independently) drawn from the same
normal distribution with a mean of 1 and standard deviation of
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0.5. Similar to the other simulations, we use patterns of t-values
in our decoding pipeline (unless explicitly stated otherwise). For
both trial-wise and run-wise decoding, we report results from
the default and aggressive procedure. All analyses are docu-
mented in the aforementioned notebook containing the fMRI
simulations.

Linear vs nonlinear confound models: predicting
VBM and TBSS data based on brain size
In the main text, we used linear models to regress out variance
associated with brain size from VBM and TBSS data. Here, we
test whether a linear model of the relation between brain size and
VBM and TBSS data is suitable, and whether possibly a non-
linear model should have been preferred. We do this by per-
forming a model comparison between linear, quadratic, and cu-
bic regression models. All analyses and results can be found
in the brain_data_vs_brainsize.ipynb notebook from the
Github repository associated with this article.

For all analyses in this section, brain size with and without
second and third degree polynomials were used as independent
variables. As target variables, we created four voxel sets: first, we
selected 500 random voxels from the VBM and TBSS data (voxel
set A). Second, to inspect how large the misfit of a linear model
could be, we selected as target variables the 500 voxels which
have the highest quadratic (voxel set B) and cubic (voxel set C)
correlation with brain size. Finally we select the 500 voxels with
highest linear correlation with brain size (voxel set D), to inspect
how large the misfit of a polynomial model is in these voxels.

We applied a 10-fold cross-validation pipeline which con-
sisted of scaling features to mean 0 and standard deviation 1, and
fitting an ordinary least squares regression model. Explained
variance (R2) was used as a metric of model performance. The
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pipeline was repeated 50 times with random shuffling of sam-
ples.

For each voxel, we calculated the difference between model
performance of linear and polynomial models. Negative dif-
ferences (ΔR2

linear−polynomial < 0) indicate that the polynomial
model has higher cross-validated R2 than a linear model, and
thus, that a linear confound regression model would leave vari-
ance arguably associated with the confound in the target voxel.
We plot the distributions of ΔR2

linear−polynomial to inspect for how
many voxels this is the case, and for how many voxels linear
models perform better.

B.2 Supplementary results
The following supplementary results describe the results from
the supplementary analyses related to controlling for confounds
in decoding analyses of (simulated) fMRI data.

Testing confound regression on simulated fMRI
data
Here, we evaluated the efficacy of confound regression (both
WDCR and CVCR) on simulated fMRI data in both trial-wise
and run-wise decoding analyses across different strengths of the
correlation between the target and the confound. Similar to
the results reported in the main article, we find that WDCR
yields consistent below chance accuracy in both the trial-wise
and run-wise decoding analyses (Supplementary Figure B.1, up-
per panels) and that CVCR yields (nearly) unbiased results for
both trial-wise and run-wise decoding (Supplementary Figure
B.1, lower panels).

Moreover, CVCR effectively controls for confounds on fMRI
data with varying amounts of autocorrelation for both trial-wise
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Figure B.1 Model performance when using WDCR (upper panels) and
CVCR (lower panels) to remove the influence of confounds in simulated
fMRI data across different correlations between the confound and the target
(rCy). Error-bars reflect the 95% CI across iterations.

Figure B.2 Model performance using CVCR versus no control and base-
line (data with no confound) for different levels of autocorrelation (after
smoothing with a Gaussian filter with an increasing standard deviation,
σfilter) for trial-wise and run-wise decoding. Note that for trial-wise decod-
ing, high autocorrelation leads to below chance-accuracy for CVCR, but this
is also present in the baseline data, which suggests that high autocorrela-
tion in general leads to negative bias (at least in our simulation).

and run-wise decoding analyses, as is shown in Supplementary
Figure B.2.
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Figure B.3Model performance when controlling for confounds during pat-
tern estimation using the “default” (upper panels) and “aggressive” (lower
panels) versions for both trial-wise (left panels) and run-wise decoding (right
panels). Note that, in these analyses, patterns of t-values from the first-level
model are used as features.

Controlling for confounds during pattern
estimation
Here, we tested the efficacy of controlling for confound during
pattern estimation (as proposed by Woolgar et al., 2014). Sim-
ilar to the previous Supplementary analyses, we evaluated this
method’s efficacy in both trial-wise and run-wise decoding anal-
yses. We furthermore evaluated both the “default” (add the con-
found to the first-level design matrix) and “aggressive” (regress
the confound from the signal before fitting the first-level model)
approaches.

As can be seen in Supplementary Figure B.3, this method
fails to control for confounds for all variants that are tested (trial-
wise vs. run-wise decoding, “default” vs. ”aggressive|). Below,
we provide a potential explanation of this bias. We argue that

304



B.2. Supplementary results

Figure B.4 Distribution of first-level parameter estimates, β̂X, for the two
conditions (condition 0 in blue, condition 1 in orange) across different corre-
lations between the target and the confound (rCy), with the colored dashed
lines indicating the mean feature value for each condition.

the mechanism underlying this bias is different in trial-wise de-
coding than in run-wise decoding. We will first focus on the
trial-wise decoding analyses.

Explanation for bias in trial-wise decoding analyses

To supplement this explanation, in Supplementary Figure B.4
we visualized the distribution of parameter estimates from the
first-level model, β̂X across the two conditions after controlling
for the confound during pattern estimation using the “aggres-
sive” version in trial-wise decoding (but the graphs are similar
when plotting the data from the “default” version; graphs for
run-wise decoding analyses are, however, different, which will
be discussed later).

When inspecting Supplementary Figure B.4, recall that the
data were generated with a confound that was positively corre-
lated with the target. Given that the target variable represents
the two different conditions (y ∈ {0, 1}), the existence of a posi-
tive correlation between the target and the confound implies that
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the confound increases the activation of the voxel in trials from
condition 0. The confound’s effect on the voxel increases with
higher correlations between the target and the confound. For
example, suppose trials from condition 0 and condition 1 both
truly activate the voxel with 1 unit (βX|y=0 = 1 and βX|y=1 = 1;
Supplementary Figure B.5, upper panel), and that the confound
is perfectly correlated with the target (rCy = 1) and thus activates
the voxel additionally with 1 unit (βC = 1). In this case, without
confound control, one would expect the voxel to be activated
in response to trials from condition 1 with a magnitude of 2
(β̂X|y=1 ≈ βX|y=1 +βC; Supplementary Figure B.5, middle panel).
If one in fact would control for the confound by regressing out
the confound from the signal (i.e., the “aggressive” approach),
one would completely remove both the true effect (βX|y=1) and
the confound effect (βC), driving the estimated activation pa-
rameter for condition 1 towards 0 (β̂X|y=1 ≈ 0). The activation
parameter for condition 0 is unaffected by removing the con-
found, as they are uncorrelated, and will thus be estimated cor-
rectly (β̂X|y=0 = 1; see Supplementary Figure B.5, lower panel).
In this way, controlling for the confound created an artificial “ef-
fect”: trials from condition 0 seem to activate the voxel more
than trials from condition 1 (β̂X|y=0 > β̂X|y=1). We believe that
this phenomenon underlies the positive bias when controlling
for confounds during pattern estimation in trial-wise decoding
analyses.1

Explanation for bias in run-wise decoding analyses

We believe that the cause of bias in run-wise decoding anal-
yses after controlling for confounds during pattern estimation

1One could argue that this issue only poses a problem when the true pa-
rameters are non-zero (βX|y=0 = βX|y=1 ̸= 0) and when the true parameters
are in fact all zero (βX|y=0 = βX|y=1 = 0), there would be no positive bias.
This is indeed the case, but we note that the true parameters are never known
in empirical anlayses, so we nonetheless advise against using this method.
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Figure B.5 Visualization of the issue underlying positive bias arising when
controlling for confounds during pattern estimation. The upper panel (“true
generative model”) shows the individual single-trial regressors for the dif-
ferent conditions, scaled by their true weight (here,βX|y=0 = βX|y=1 = 1)
and the confound (here, rCy = 0.9). The middle panel (“signal”) shows the
signal resulting from the generative model (including noise, ε). The lower
panel (“estimated parameters”) shows the estimated model parameters for
the different single-trial regressors. The dashed lines represent the average
estimated parameter per condition, which shows that the estimated param-
eters of the condition that is correlated with the confound are driven towards
zero.

is different than the cause of bias in trial-wise decoding analy-
ses. Upon further inspection of the results of this simulation,
we found that in the specific case of run-wise decoding with the
“default” approach (i.e., including the confound in the first-level
model instead of regressing the confound out of the signal before
fitting the first-level model), there is no bias when using patterns
of parameter estimates (X) instead of patterns of t-values (t(X);
Supplementary Figure B.6, upper row, left panel). Indeed, when
visualizing the distributions of the feature values (Supplemen-
tary Figure B.6, lower row), using the “raw” parameter estimates
(β̂X, left column) or t-values (right column), it is clear that the
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Figure B.6 Visualization of model performance and feature distributions
based on patterns of “raw” parameter estimates (β̂X), variance of parame-
ter estimates (var(β̂X)), or t-values (t(β̂X))) after controlling for confounds.
The upper row shows the average accuracy across folds across different
values of the correlation between the confound and the target (rCy) for the
different types of features. Note that the middle panel shows that “vari-
ance decoding” only occurs when controlling for confounds, as model per-
formance is at chance when using patterns of variance estimates (the blue
line in the middle panel). The lower row represents the distributions of fea-
ture values for the three different statistics when rCy = 0.9.

bias only arises when using t-values. In fact, this bias in t-values
is caused by unequal variance (Supplementary Figure B.6, mid-
dle panel) of the parameter estimates. The cause of the increased
variance for condition 1, here, is due to the fact that a positive
correlation between the confound and target (rCy) results in a
relatively higher correlation between the regressor of condition
1 and the confound regressor compared to the correlation be-
tween the regressor of condition 0 and the confound regressor.
(Note that if the correlation would be negative, e.g., rCy = −0.9,
then the reverse would be true.) This issue of classifiers picking
up differences in parameter variance in the process of estimating
patterns for MVPA has been termed “variance decoding”, which
is described in detail in Görgen et al. (2017) and Hebart & Baker
(2017).
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To summarize, we found that controlling for confound dur-
ing pattern estimation leads to positive bias in all cases except
in run-wise decoding using the “default” approach. We be-
lieve that cross-validated confound regression (CVCR) is nev-
ertheless preferable to this method because it both controls for
confounds effectively and allows the use of t-values (or other
statistics based on parameter estimates, like multivariate noise-
normalized parameter estimates), which has been shown to be
more sensitive than using “raw” parameter estimates in MVPA
(Guggenmos et al., 2018; Misaki et al., 2010; Walther et al.,
2016).

Linear vs. nonlinear confound models: predicting
VBM and TBSS intensity using brain size
Supplementary Figure B.7 (top left panel) shows the distri-
butions of difference in cross-validated R2 (Linear - Polyno-
mial) for the VBM data with 500 randomly selected voxels
(voxel set A). A linear model performs (slightly) better (posi-
tive R2) than a quadratic model for 86.6% of these voxels (mean
ΔR2

linear−quadratic = 0.009, SD = 0.006), and better than a cubic
model for 90.8% of the voxels (mean ΔR2

linear−cubic = 0.019, SD =
0.027). Note that it can be expected that polynomial and cubic
models perform better in a minority of the voxels simply due to
random noise in the data (since we compare 500 R2-values), even
if the “true” underlying relation is linear. To visualize the quality
of fit of these models fit, brain size is plotted against VBM voxel
intensity for a randomly selected voxel from this set in the bot-
tom left panel. Lines are regression lines for the linear, quadratic,
and cubic models. Supporting the use of a linear model, there is
no clear deviation from bivariate normality.

To explore further how well linear models perform in voxels
where we expect polynomial models to perform best, we plotted
the R2 distributions for the 500 voxels with the highest overall
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Figure B.7 Top row: R2 distributions for the four voxel sets of the VBM
data. Density estimates are obtained by kernel density estimation with a
Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth selection. Bot-
tom row: scatter plots of the relation between brain size (scaled to mean 0
and SD 1) and voxel intensity from randomly selected voxels from each
voxel sets. These panels are included to visualize the quality of model fits
and to inspect whether there are no obvious misfits, i.e., whether the mod-
els miss patterns in the data. This is not the case — all models seem to fit
the distributions reasonably well.

quadratic correlation with brain size (voxel set B; second col-
umn). These are the voxels where a quadratic model would re-
move most variance (if used in a confound regression proce-
dure). Also for these voxels, a linear model performs equally
well as or better than a quadratic model (R2

linear−quadratic > 0 for
89.4% of the voxels, mean ΔR2

linear−quadratic = 0.006, SD = 0.007)
and a cubic model (ΔR2

linear−cubic > 0 for 57.8% of these vox-
els, mean ΔR2

linear−cubic = 0.003, SD = 0.015). For a randomly
selected voxel from this set, a scatter plot is included in the bot-
tom panel to visualize how well the regression models fit. The
plot indicates no obvious misfit of any of the models.

The same analysis was also performed for the 500 voxels
that have the highest overall cubic correlation with brain size
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(voxel set C; third column). The histograms look similar to the
histograms in the second column because voxel sets B and C
consisted of largely the same voxels. It should not thus not be
surprising that linear models again perform well compared to
quadratic models (ΔR2

linear−quadratic > 0 for 90.4% of the voxels,
mean ΔR2

linear−quadratic = 0.006, SD = 0.006), and compared to
cubic models (ΔR2

linear−cubic > 0 for 57.6% of these voxels, mean
ΔR2

linear−cubic = 0.003, SD = 0.014). The bottom panel shows a
randomly selected voxel from this voxel set, which again shows
no obvious misfit.

Finally, we inspect the 500 voxels with the highest overall
linear correlation with brain size (voxel set D, fourth column).
Again, these turned out the be partly the same voxels as in set
B and C. Therefore, linear models perform again equally well as
or better than quadratic models (ΔR2

linear−quadratic > 0 for 94.2%
of the voxels, mean ΔR2

linear−quadratic = 0.007, SD = 0.004) and
cubic models (ΔR2

linear−quadratic > 0 for 59.2% of the voxels, mean
ΔR2

linear−quadratic = 0.004, SD = 0.014). The bottom panel show
a randomly selected voxel from this voxel set, and indicates that
all models capture the structure in the data.

Together, these results seem to imply that for all voxel sets,
linear models perform mostly equally well as or better than poly-
nomial models. Yet, it is interesting to inspect the “worst case”
voxels; that is, to inspect how large the maximal misfit of a lin-
ear model is. Therefore, in Supplementary Figure B.8, we plot
the relation between brain size and VBM intensity for the voxel
with most negative ΔR2

linear−cubic from voxel set A (left panel) and
voxel set B. For comparison, we also plot the relation between
brain size and the voxel where a linear model performs better
than a cubic model (selected from voxel set B). For the selected
voxels, ΔR2

linear−cubic values are -0.036 (left panel), -0.039(middle
panel) and 0.032. Especially in the middle and right panel, the
difference in fit between the linear and cubic model is mostly ap-
parent the tails of the brain size distribution, where the model fit
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Figure B.8 Visualisation of the relation between brain size and VBM inten-
sity for three voxels. The left two voxels have most negative ΔR2

linear−cubic
(i.e., the cubic model performs maximally better than the linear model) in
voxel sets A and B, respectively. The voxel plotted in the right panel has
the most positive ΔR2

linear−cubic in voxel set B.

is based on least observations. For most brain sizes, both models
make similar predictions about voxel intensity.

We repeated the same analyses for the TBSS data, and sum-
marize the results in Supplementary Figure B.9. Since the results
are qualitatively the same as for the VBM data, and lead to the
same conclusions, we do not discuss them in detail. Those in-
terested can find additional details in the notebook of this sim-
ulation.
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Figure B.9 Top row: R2 distributions for the four voxel sets of the TBSS
data. Density estimates are obtained by kernel density estimation with a
Gaussian kernel and Scott’s rule (Scott, 1979) for bandwidth selection. Bot-
tom row: scatter plots of the relation between brain size (scaled to mean 0
and SD 1) and voxel intensity from randomly selected voxels from each
voxel sets. These panels are included to visualize the quality of model fits
and to inspect whether there are no obvious misfits, i.e., whether the mod-
els miss patterns in the data. This is not the case — all models seem to fit
the distributions well.
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Figure B.10 Model performance of fully cross-validated confound regres-
sion (CVCR) versus confound regression on the train-set only (“train only”)
on simulated data without any experimental effect (signal R2 = 0.004; left
graph) and with some experimental effect (signal R2 = 0.1; right graph) for
different values of confound R2 (cf. Figure 3.8 in the main text). The orange
line represents the average performance (± 1 SD) when confound R2 = 0,
which serves as a “reference performance” for when there is no confounded
signal in the data. For both graphs, the correlation between the target and
the confound, ryC, is fixed at 0.65. The reason for testing this version of
confound regression (i.e., on the train-set only) is because it reduces the
computation time substantially compared to fully cross-validated confound
regression (as it does not have to compute Xtest = Xtest − Ctest β̂C). How-
ever, this method seems to yield substantial bias when there is (almost) no
signal (left graph), but intriguingly not when there is true signal (right graph).

Figure B.11 Model performance of the different evaluated methods for
confound control but using the AUC-ROC metric to measure model perfor-
mance instead of F1 score, as this latter metric has been criticized because
it neglects false negatives (Powers, 2011). The results are highly similar to
results obtained when using the F1 score (cf. Figure 3.8 in the main text).
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Figure B.12 Model performance of the different evaluated methods for
confound control, including a method proposed by a reviewer. This method
entails training the decoding model on data including the confound as a pre-
dictor (i.e., an implementation of the “Include confound in model” method),
but setting the confound values to their mean in the test set. The rationale
is that the decoding model cannot profit from the confound in the test set.
However, contrary to expectations, this method performs similarly to not
controlling for confounds.

Figure B.13 Reproduction of Figure 3.8 from the main text (“generic sim-
ulation” results), but with the random subsampling procedure instead of the
targeted subsampling procedure (from only a single iteration due to time
constraints). This procedure attempts to find a subsample of the data of a
given size without a correlation between target and confound for 10.000
tries. If such a subsample cannot be found, the subsample size is de-
creased by 1, after which again 10.000 attempts are made to find a good
subsample with the new size. The results from counterbalancing, here, are
qualitatively similar to the results when using the “targeted subsampling”
method (cf. Figure 3.8 in the main text), albeit much slower.
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Figure B.14 Reproduction of Figure 3.10 from the main text, but with the
random subsampling procedure instead of the targeted subsampling proce-
dure. This procedure attempts to find a subsample of the data of a given
size without a correlation between target and confound for 10.000 tries. If
such a subsample cannot be found, the subsample size is decreased by 1,
after which again 10.000 attempts are made to find a good subsample with
the new size. The plot shows that also random subsampling can induce a
positive bias, even with extreme power loss (90% smaller sample).
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Figure B.15 These plots show that the relationship between the standard
deviation of the empirical feature-target correlation distribution, sd(ryX), and
accuracy holds for different samples sizes (i.e., values for N). Note that
the predicted accuracy based on the standard deviation expected from the
sampling distribution is at 0.5 for every plot. The data were generated in the
same manner as reported in the WDCR follow-up section.

Figure B.16 These plots show that the relationship between the standard
deviation of the empirical feature-target correlation distribution and accuracy
also holds for sizes of the test-set (replicating results from Jamalabadi et al.,
2016). Note that the predicted accuracy is again at 0.5 for every plot. The
data were generated in the same manner as reported in the WDCR follow-
up section.

317



B.2. Supplementary results

Figure B.17 These plots show that the relationship between the standard
deviation of the empirical feature-target correlation distribution, sd(ryX), and
accuracy also holds for different numbers of features (K). Note that the
predicted accuracy based on sd(ryX) is approximately at 0.5 for every plot.
The data were generated in the same manner as reported in the WDCR
follow-up section.

Figure B.18 The relation of the standard deviation of the correlation dis-
tribution and accuracy for different values of K.
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Appendix C

Supplement to Chapter 4

Table C.1 Acquisition parameters for the T1-weighted scans acquired
across all three datasets.

T1w scan
parameter

ID1000 PIOP1 PIOP2

Number of scans 3 1 1

Scan technique 3D MPRAGE 3D MPRAGE 3D MPRAGE

Number of signals
(repetitions)

1 2 2

Fat suppression Yes Yes Yes

Coverage Whole-brain* Whole-brain* Whole-brain*

FOV (RL / AP /
FH; mm)

160×256×256 188×240×220 188×240×220

Voxel size (mm) 1×1×1 1×1×1 1×1×1

TR / TE (ms) 8.1 / 3.7 8.5 / 3.9 8.5 / 3.9

Water-fat shift (pix) 2.268 2.268 2.268

Bandwidth
(Hz/pix)

191.5 191.5 191.5

Flip angle (deg) 8 8 8

Phase accell. factor
(SENSE)

1.5 (RL) 2.5 (RL) / 2 (FH) 2.5 (RL) / 2 (FH)

Acquisition
direction

Sagittal Axial Axial

Duration 5 min 58 sec 6 min 3 sec 6 min 3
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Note: MPRAGE: Magnetization Prepared Rapid Gradient Echo, FOV: field-of-view, RL:
right-left, AP: anterior-posterior, FH: feet-head, TR: time to repetition, TE: time to echo,
n/a: not applicable. * Whole-brain coverage included the brain-stem and cerebellum, unless
otherwise stated.

Table C.2Acquisition parameters for the phase-difference fieldmap scans
acquired across all three datasets.

Phase-difference
fieldmap
parameters

ID1000 PIOP1 PIOP2

Scan technique n/a n/a 3D MPRAGE

Fat suppression n/a n/a No

Coverage n/a n/a Whole-brain

FOV (RL / AP /
FH; mm)

n/a n/a 208×256×256

Voxel size (mm) n/a n/a 2×2×2

TR / TE (ms) n/a n/a 3-Nov

Delta TE (ms) n/a n/a 5

Water-fat shift (pix) n/a n/a 1.134

Bandwidth
(Hz/pix)

n/a n/a 383

Flip angle (deg) n/a n/a 8

Phase accell. factor
(SENSE)

n/a n/a 2.5 (RL) / 2 (FH)

Acquisition
direction

n/a n/a Axial

Duration n/a n/a 1 min 44

Note: MPRAGE: Magnetization Prepared Rapid Gradient Echo, FOV: field-of-view, RL:
right-left, AP: anterior-posterior, FH: feet-head, TR: time to repetition, TE: time to echo.

Table C.3 Acquisition parameters for the fMRI scans acquired across all
three datasets.

fMRI scan
parameters

ID1000 PIOP1 (MB)* PIOP1 (seq)* PIOP2
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Number of
scans

1 2 3 4

Scan technique GE-EPI GE-EPI GE-EPI GE-EPI

Coverage Whole-brain Whole-brain Whole-brain

FOV  (RL / AP
/ FH)

138×192×192 240×240×118 240x240x122 240x240x122

Voxel size
(mm.)

3×3×3 3×3×3 3×3×3 3×3×3

Matrix size 64x64 80x80 80x80 80x80

Nr. of slices 40 36 37 37

Slice gap
(mm.)

0.3 0.3 0.3 0.3

TR / TE (ms.) 2200 / 28 750 / 28 2000 28

Water-fat shift
(pix.)

11.575 11.001 11.502 11.502

Bandwidth
(Hz/Pix)

34.6 39.5 37.8 37.8

Flip angle
(deg.)

90 60 76.1 76.1

Phase accell.
factor (SENSE)

0 2 (AP) 2 (AP) 2 (AP)

Phase
encoding
direction

P » A P » A P » A P » A

Multiband
acceleration
factor

n/a 3 n/a n/a

Multiband
FOV shift

n/a None n/a n/a

Slice encoding
direction

L » R
(sequential)

F » H
(sequential)

F » H
(sequential)

F » H
(sequential)

Nr. of dummy
scans

2 2 2 2

Dynamic
stabilization

none enhanced enhanced enhanced

Note: MPRAGE: Magnetization Prepared Rapid Gradient Echo, GE-EPI: gradient-echo
echo-planar imaging, FOV: field-of-view, RL: right-left, AP: anterior-posterior, FH: feet-
head, TR: time to repetition, TE: time to echo, Seq.: sequential (non-multiband), MB: multi-
band (i.e., simultaneous slice excitation). * MB scans were acquired for the face perception
and resting-state paradigms of PIOP2. Sequential scans were acquired for the movie watch-
ing (ID1000), working memory, emotion matching, gender stroop, emotion anticipation,
stop signal paradigms (PIOP1 and PIOP2).
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Table C.4 Acquisition parameters for the DWI scans acquired across all
three datasets.

DWI scan
parameters

ID1000 PIOP1 PIOP2

Number of scans 3 1 1

Scan technique SE-DWI SE-DWI SE-DWI

Shell Single Single Single

Nr. of b0 images 1 1 1

Nr. of
diffusion-weighted
dirs.

32 32 32

Sampling scheme Half sphere Half sphere Half sphere

DWI b-value 1000 s/mm2 1000 s/mm2 1000 s/mm2

Coverage Whole-brain
(partial cerebellum)

Whole-brain
(partial cerebellum)

Whole-brain
(partial cerebellum)

FOV (RL / AP /
FH)

224×224×120 224×224×120 224×224×120

Voxel size (mm.) 2×2×2 2×2×2 2×2×2

Matrix size 112×112 112×112 112×112

Nr. of slices 60 60 60

Slice gap (mm.) 0 0 0

TR / TE (ms.) 6312* / 74 7387* / 86 7387* / 86

Water-fat shift
(pix.)

13.539 18.926 18.926

Bandwidth
(Hz/pix.)

33.8 22.9 22.9

Flip angle (deg.) 90 90 90

Phase accell.
(SENSE)

3 (AP) 2 (AP) 2 (AP)

Phase encoding dir. P » A P » A P » A

Slice encoding
direction

F » H F » H F » H

Duration 4 min 49 sec 5 min 27 sec 5 min 27 sec
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Note: SE-DWI: Spin-Echo Diffusion-Weighted Imaging„ FOV: field-of-view, RL: right-
left, AP: anterior-posterior, FH: feet-head, TR: time to repetition, TE: time to echo. *DWI
scans were acquired with the shortest possible TR (”shortest” setting on Philips scanners),
causing the actual TR values to vary from scan to scan. The TRs reported in this table reflect
the median TR across all DWI scans per dataset (see the Raw data standardization section
for more information.

Table C.5 Description of the subject variables and psychometric vari-
ables.

Variable name Description Levels / range Units Included in

age Subject age at
day of
measurement

- Quantiles All

sex (Biological)
sex

male, female - All

gender_identity_F To what
degree the
subject felt
female

1-7 A.U. ID1000

gender_identity_M To what
degree the
subject felt
male

1-7 A.U. ID1000

sexual_attraction_M To what
degree the
subject was
attracted to
males

1-7 A.U. ID1000

sexual_attraction_F To what
degree the
subject was
attracted to
females

1-7 A.U. ID1000

BMI Body-mass-
index

- kg/m2 All

handedness Dominant
hand

left, right ID1000

handedness Dominant
hand

left, right,
ambidextrous

- PIOP1&2
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background_SES Social
economical
status of
family in
which the
subject was
raised.

2-6 A.U. ID1000

educational_level Highest
achieved (or
current)
educational
level

low, medium,
high

- ID1000

educational_category Highest
achieved (or
current)
education
type

applied,
academic

- PIOP1&2

religious Whether the
subject is
religious or
not

no, yes - PIOP1

religious_upbringing Whether the
subject was
raised
religiously or
not

no, yes - ID1000

religious_now Whether the
subject is
religious now

no, yes - ID1000

religious_importance To what
degree
religion plays
a role in the
subject’s daily
life

1-5 A.U. ID1000

IST_fluid IST fluid
intelligence
subscale

- A.U. ID1000

IST_memory IST memory
subscale

- A.U. ID1000

IST_crystallised IST
crystallised
intelligence
subscale

- A.U. ID1000

IST_total_intelligence IST total
intelligence
scale

- A.U. ID1000
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BAS_drive BAS drive
scale

- A.U. ID1000

BAS_fun BAS fun scale - A.U. ID1000

BAS_reward BAS reward
scale

- A.U. ID1000

BIS BIS scale - A.U. ID1000

NEO_N Neuroticism
scale (sum
score)

- A.U. All

NEO_E Extraversion
scale (sum
score)

- A.U. All

NEO_O Openness
scale (sum
score)

- A.U. All

NEO_A Agreeableness
scale (sum
score)

- A.U. All

NEO_C Conscientiousness
scale (sum
score)

- A.U. All

STAI_T Trait anxiety
(from the
STAI) (sum
score)

- A.U. ID1000

Note: The “variable name” coincides with the column name for that variable in the partic-
ipants.tsv file. Note that missing values in this file are coded with “n/a”. A.U.: arbitrary units.

Table C.6 All data types with associated identifiers, descriptions, and
modalities.

Data
type

Identifier (ext.) Description Modality

Raw _T1w (nii.gz) T1-weighted scan Anatomical MRI

_bold (nii.gz) Functional (BOLD)
MRI scan

Functional MRI

_magnitude1 (nii.gz) Average magnitude
image (across two
echoes) of B0 fieldmap
scan (PIOP2 only)

Fieldmap
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_phasediff (nii.gz) Difference between two
phase images of B0
fieldmap scan

Fieldmap

_dwi (.nii.gz) Diffusion-weighted scan DWI

_dwi (.bvec) Diffusion gradient table
(plain-text file)

DWI

_dwi (.bval) Diffusion b-value
sequence (plain-text file)

DWI

_physio (tsv.gz) Physiology
(cardiac/respiratory
traces + volume onsets)

Physiology

_events (tsv) Onsets, durations, and
other relevant properties
of events during task
fMRI

Behavior

* (.json) Metadata associated
with a specific file,
acquisition type, or file
type

All modalities

Deriv. _T1w (nii.gz) Preprocessed
T1-weighted scan

Functional MRI

_mask (nii.gz) Binary brain mask (0:
not brain, 1: brain)

Functional / anatomical
/ diffusion MRI

_dseg (nii.gz) Discrete segmentation
(0: background, 1: gray
matter, 2: white matter,
3: cerebrospinal fluid)

Anatomical MRI

_probseg (nii.gz) Probabilistic
segmentation (1st
volume: gray matter,
2nd volume: white
matter

.surf (.gii) Reconstructed surfaces
(e.g., inflated,
midthickness, pial, and
smoothwm)

Anatomical MRI

_xfm (.h5) Linear + non-linear
transformation
parameters between two
spaces (orig, T1w,
MNI152NLin2009cAsym,
and fsaverage5)

Functional / anatomica
MRI
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_xfm (.txt) Linear transformation
parameters between two
spaces (orig, T1w,
MNI152NLin2009cAsym,
and fsaverage5)

Functional / anatomical
MRI

_bold (nii.gz) Preprocessed
BOLD-MRI scan

Functional MRI

_boldref (nii.gz) Reference volume used
for computing
transformation
parameters

Functional MRI

_regressors (tsv) Table with confound
regressors for
BOLD-MRI data

Functional MRI

* (.json) Metadata from file with
the same name
(excluding extension)

All modalities

_dwi (.nii.gz) Preprocessed
diffusion-weighted scan

DWI

_dwi (.bvec) Preprocessed gradient
table

DWI

_dwi (.bval) Preprocessed b-value
sequence

DWI

_mask (.nii.gz) Binary brain mask (0:
not brain, 1: brain)

DWI

_diffmodel Estimated parameters
from the diffusion
tensor model

DWI

_EVECS Eigenvectors from the
diffusion tensor model

DWI

_FA Fractional anisotropy
map

DWI

GMvolume Estimated voxelwise
gray matter volume map

Anatomical MRI

_stats Morphological statistics
per anatomical region
from a particular atlas

Anatomical MRI

_regressors Physiology-derived
RETROICOR, HRV, and
RVT regressors for
BOLD-MRI data

Physiology
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Appendix D

Supplement to Chapter 5

Table D.1 List of Neurosynth terms associated with the results of the
exploratory whole-brain analyses.

Contrast Neurosynth
term

Overall corr. Cortical corr. Subcortical
corr.

Negative (act -
pas)

Goal 0.22 0.24 0.18

Fear 0.18 0.3 -0.04

Reward 0.17 0.08 0.43

Task 0.17 0.19 0.17

Conflict 0.16 0.2 0.02

Anticipation 0.16 0.1 0.40

Monetary 0.15 0.04 0.40

Incentive 0.14 0.01 0.38

Demands 0.14 0.17 0.01

Incentive delay 0.13 0.02 0.36

Positive (act -
pas)

Pain 0.15 0.16 0.28

Painful 0.14 0.15 0.17

Execution 0.14 0.14 0.07

Somatosensory 0.13 0.14 0.20

Finger 0.13 0.12 0.16

Movement 0.13 .13. 0.18
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Goal 0.13 .15. 0.06

Hand 0.11 0.11 0.18

Task 0.12 0.12 0.19

Tapping 0.11 0.12 0.13

Negative (act -
pas) - Positiv
(act - pas)

Reward 0.20 0.09 0.48

Task 0.19 0.21 0.20

Monetary 0.17 0.05 0.44

Semantic 0.18 0.22 -0.02

Anticipation 0.17 0.07 0.43

Incentive 0.16 0.02 0.42

Demands 0.17 0.2 0.00

Fear 0.15 0.22 0.05

Autobiographical 0.16 0.19 0.02

Retrieval 0.16 0.2 -0.06

Note: The ten terms with the highest spatial correlation with the whole-brain maps (ex-
cluding anatomical terms) are reported.

Table D.2 Cluster statistics and associated brain regions from the ex-
ploratory whole-brain analysis.

Cluster
nr.

Cluster
size

Cluster
max.

X Y Z Region K Max.

1 120246.41 34 28 -6 Left Frontal Pole 997 4.99

Right Frontal Orbital Cortex 870 6.41

Left Frontal Orbital Cortex 802 5.49

Right Frontal Pole 743 5.19

Right Inferior Frontal Gyrus, pars
triangularis

647 5.33

Left Temporal Pole 640 4.64
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Left Insular Cortex 634 6.23

Right Temporal Pole 616 4.75

Right Insular Cortex 381 5.94

Left Inferior Frontal Gyrus, pars
opercularis

373 4.53

Left Frontal Operculum Cortex 365 5.37

Left Inferior Frontal Gyrus, pars
triangularis

324 5.49

Right Frontal Operculum Cortex 287 5.21

Right Inferior Frontal Gyrus, pars
opercularis

218 4.48

Left Middle Frontal Gyrus 192 3.80

Right Middle Frontal Gyrus 102 3.50

Right Middle Temporal Gyrus,
anterior division

39 3.63

Left Subcallosal Cortex 39 4.23

Left Precentral Gyrus 27 3.22

Left Central Opercular Cortex 27 3.12

Right Thalamus 462 4.76

Brain-Stem, left part 447 4.19

Left Thalamus 446 4.40

Left Caudate 257 4.39

Right Caudate 239 4.95

Right Putamen 211 4.53

Left Putamen 173 4.88

Brain-Stem, right part 153 4.34

Left Accumbens 61 4.16

Right Pallidum 34 3.63

Right Accumbens 29 4.31

Right Amygdala 26 3.69
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2 7133 6.17 8 30 26 Right Paracingulate Gyrus 974 5.95

Right Cingulate Gyrus, anterior
division

897 6.17

Left Paracingulate Gyrus 835 5.99

Left Superior Frontal Gyrus 832 4.73

Left Cingulate Gyrus, anterior
division

797 5.89

Right Superior Frontal Gyrus 646 4.67

Right Frontal Pole 443 4.25

Left Juxtapositional Lobule
Cortex

360 5.04

Left Postcentral Gyrus 287 4.15

Left Precentral Gyrus 283 4.08

Right Juxtapositional Lobule
Cortex

281 4.78

Left Frontal Pole 179 4.11

Left Middle Frontal Gyrus 124 4.03

Left Superior Parietal Lobule 42 3.64

Right Cingulate Gyrus, posterior
division

40 3.41

Right Frontal Medial Cortex 23 3.13

3 534 5.05 -
34

-
46

-
24

Left Temporal Fusiform Cortex,
posterior division

95 3.98

Left Temporal Occipital Fusiform
Cortex

76 5.05

4 401 4.13 20 -
50

0 Right Lingual Gyrus 182 4.13

Right Intracalcarine Cortex 119 3.77

Right Supracalcarine Cortex 38 3.47

Right Cingulate Gyrus, posterior
division

35 3.78
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5 375 4.70 -
16

-
50

-2 Left Lingual Gyrus 115 4.70

Left Cingulate Gyrus, posterior
division

111 4.05

Left Precuneous Cortex 61 3.97

Left Intracalcarine Cortex 43 3.05

Note: The X, Y, and Z coordinates refer to MNI152 (2 mm) space. The regions
are taken from the Harvard–Oxford (sub)cortical atlas and voxels are assigned to
regions based on their maximum probability across all ROIs within the atlas. *K*
refers to the number of voxels within a particular region.

Table D.3 Cluster statistics and associated brain regions from the ex-
ploratory whole-brain analysis.

Cluster
nr.

Cluster
size

Cluster
max.

X Y Z Region K Max.

1 1857 4.40 0 6 48 Right Cingulate Gyrus, anterior
division

400 4.10

Left Juxtapositional Lobule
Cortex (formerly Supplementary
Motor Cortex)

347 4.40

Left Cingulate Gyrus, anterior
division

347 4.34

Right Paracingulate Gyrus 208 4.02

Right Juxtapositional Lobule
Cortex (formerly Supplementary
Motor Cortex)

164 4.27

Left Paracingulate Gyrus 158 4.27

Right Cingulate Gyrus, posterior
division

67 3.55

Left Superior Frontal Gyrus 51 4.06

Left Precentral Gyrus 40 3.35

Left Cingulate Gyrus, posterior
division

28 3.22
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2 1651 4.54 50 36 2 Right Frontal Pole 463 4.54

Right Inferior Frontal Gyrus, pars
triangularis

304 4.51

Right Frontal Orbital Cortex 240 3.95

Right Insular Cortex 228 4.21

Right Temporal Pole 143 3.66

Right Frontal Operculum Cortex 117 4.12

Right Superior Temporal Gyrus,
anterior division

48 3.44

Right Superior Temporal Gyrus,
posterior division

36 3.19

Right Inferior Frontal Gyrus, pars
opercularis

27 3.02

3 1196 4.57 -
40

14 -8 Left Insular Cortex 421 4.57

Left Frontal Pole 377 4.51

Left Frontal Orbital Cortex 128 3.70

Left Frontal Operculum Cortex 107 3.82

Left Inferior Frontal Gyrus, pars
triangularis

59 3.67

Left Putamen 40 3.55

4 931 4.84 -
34

-
46

-
20

Left Temporal Occipital Fusiform
Cortex

60 4.84

Left Temporal Fusiform Cortex,
posterior division

44 4.11

5 570 3.98 -
48

-
26

42 Left Postcentral Gyrus 300 3.98

Left Precentral Gyrus 220 3.83

Left Supramarginal Gyrus,
anterior division

35 3.27
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6 422 3.95 -
26

-
26

64 Left Postcentral Gyrus 136 3.43

Left Lateral Occipital Cortex,
superior division

117 3.85

Left Superior Parietal Lobule 82 3.65

Left Precentral Gyrus 67 3.95

7 332 4.11 26 -
68

-4 Right Lingual Gyrus 149 3.62

Right Intracalcarine Cortex 97 3.33

Right Supracalcarine Cortex 39 3.75

Right Occipital Fusiform Gyrus 25 4.11

8 266 3.84 -8 -
18

4 Right Thalamus 128 3.71

Left Thalamus 127 3.84

Note: The X, Y, and Z coordinates refer to MNI152 (2 mm) space. The regions
are taken from the Harvard–Oxford (sub)cortical atlas and voxels are assigned to
regions based on their maximum probability across all ROIs within the atlas. *K*
refers to the number of voxels within a particular region.

Table D.4 Stimulus codes for the images used in the choice task.

Image valence IAPS database NAPS database

Negative IAPS 2683 NAPS faces 16

IAPS 2691 NAPS faces 28

IAPS 2799 NAPS faces 283

IAPS 3216 NAPS faces 7

IAPS 6212 NAPS people 127

IAPS 6313 NAPS people 201
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IAPS 6520 NAPS people 214

IAPS 6571 NAPS people 22

IAPS 6831 NAPS people 226

IAPS 6840 NAPS people 3

IAPS 9050 NAPS people 33

IAPS 9163 NAPS people 39

IAPS 9250

IAPS 9400

IAPS 9419

IAPS 9427

IAPS 9428

IAPS 9429

IAPS 9433

IAPS 9435

IAPS 9900

IAPS 9921

IAPS 9926

Positive IAPS 2091 NAPS faces 107

IAPS 2216 NAPS faces 109

IAPS 2299 NAPS faces 232

IAPS 2332 NAPS faces 234

IAPS 2340 NAPS faces 3

IAPS 4623 NAPS faces 321

IAPS 7515 NAPS faces 354

IAPS 7660 NAPS faces 61

IAPS 8185 NAPS faces 82

IAPS 8461 NAPS faces 88
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IAPS 8496 NAPS faces 89

IAPS 8540 NAPS people 168

NAPS people 174

NAPS people 181

NAPS people 182

NAPS people 185

NAPS people 186

NAPS people 187

NAPS people 192

NAPS people 228

NAPS people 43

NAPS people 50

NAPS people 54

Note: Images were taken from both the IAPS (Lang, Bradley, & Cuthbert,
1997) and NAPS (Marchewka, Żurawski, Jednoróg, & Grabowska, 2014) database.
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Figure D.1 Subplots of individual regressors from the significant voxels in
the confirmatory contrast negative~active - passive~ - positive~active - pas-
sive~ in the induction-phase. These plots show the direction of the effects.
Plots are averaged over all significant voxels within each ROI (striatum in
upper plots, IFG in lower plots), separately for the negative trials (left plots)
and positive trials (right plots) with subplots for the active choice and pas-
sive viewing condition. Dots represent the participant-specific ROI-average
parameter estimate from the first-level analysis. The horizontal line in the
boxplots represents the median and the whiskers represent the interquar-
tile range. Note that this figure is only meant to show the directionality of
the effects, not their statistical significance (as the ROIs itself only contain
voxels that were significant in the group-analysis).
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Appendix E

Supplement to Chapter 6

E.1 Supplementary methods
Below, we describe the methodology behind hypothesis kernel
analysis and noise ceiling estimation in more detail.

Hypothesis kernel analysis (in detail)
Step 1: encoding mappings

The first step in our method is the embedding of hypotheses in
a common space. In the context of AU-emotion mappings, this
amounts to formalizing these mappings as points in “AU space”.
Here, AU space is a multidimensional space in which each of
the AUs under consideration represents one dimension and each
AU-emotion mapping (e.g., “disgust = AU9 + AU10”) can be
represented as a single point in this space. For example, sup-
pose that we only consider a limited set of five AUs (AU4, AU9,
AU10, AU12, and AU23). We then can represent the hypothet-
ical mapping “disgust = AU9 + AU10”, Mdisgust, as a point with
five coordinates (i.e., a vector), which value indicates whether a
given AU is part of the hypothesized configuration (1) or not (0):

Mdisgust =
[
0 1 1 0 0 0

]
(E.1)

Note that, in the above example, values at the positions of
hypothesized AUs are all encoded as 1, which implies that each
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E.1. Supplementary methods

AU within the configuration is expressed equally intensely. This
does not have to be the case; if, for example, the aforementioned
mapping hypothesized that disgust is expressed with a combina-
tion of AU9 at 100% intensity but AU10 at 50% intensity, then
its embedding can be expressed as follows:

Mdisgust =
[
0 1 .5 0 0 0

]
(E.2)

For simplicity, we assume in this example that each hypoth-
esized AU is expressed at equal intensity (such that vectors are
binary). Importantly, many studies outline mappings with re-
gard to multiple emotions, which we will refer to here as classes.
For this example, we assume that our hypothetical mapping M
limits its mappings to the six basic emotions. Specifically, sup-
pose that mapping M outlines, in addition the the previously
defined happiness mapping, specific hypothetical AU-emotion
mappings for the following categorical emotions:

• anger = AU4 + AU5 + AU7
• disgust = AU9 + AU15
• fear = AU1 + AU2 + AU4 + AU7 + AU26
• sadness = AU1 + AU4 + AU15
• surprise = AU1 + AU2 + AU5 + AU26

Accordingly, we can encode the entire set of AU-emotion
mappings for a given mapping, M, with C classes and D dimen-
sions into a C × D matrix, by vertically stacking the C different
row mapping vectors. For our hypothetical mapping, M, its as-
sociated “mapping matrix” would look like the following:

339



E.1. Supplementary methods

M =



0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0

1 1 1 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0

1 1 0 1 0 0 0 0 0 1


(E.3)

where its rows represent the different classes (categorical
emotions) and the columns the involvement of a specific AU.
Note that although the above represents a hypothetical mapping,
its sparsity is something we would expect, as facial expressions
are unlikely to be generated by a full (dense) set of action units
(Yu et al., 2012).

Step 2: encoding stimuli

In the previous section we outlined how to formalize AU-
emotion mappings as points (or, equivalently, vectors) in AU
space. One way to evaluate these formalized mappings is to sub-
ject them to actual categorical emotion ratings from human par-
ticipants in response to stimuli with known AU configurations.
Ideally, the stimuli from such an experiment sample the AU
space as densely and uniformly as possible in order not to bias
the results towards hypothesized mappings. Many experiments
on facial emotion expressions, however, use posed and stereo-
typed stimuli (e.g., facial expressions of intense joy or anger),
which cover only a small part of the entire AU space and thus do
not allow for unbiased evaluation of AU-based theories. In con-
trast, reverse correlation-based experiments, which are charac-
terized by randomly and parametrically varying the input space
(defined by AU configurations) and collection of resulting per-
cepts (here: perception of categorical emotion) do not impose
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E.1. Supplementary methods

such constraints (Jack et al., 2017) and thus present an ideal type
of dataset to subject to our formalized AU-emotion mappings.

In reference to our previously defined hypothetical 10-
dimensional AU space, assume that we have categorical emotion
ratings e from a set of emotions E (e ∈ E) in response to a collec-
tion of N facial expression stimuli parameterized with random
AU configurations, drawn from the same 10-dimensional AU
space discussed before. With such data, we can encode the stim-
uli in AU space in the same way we did in the previous section for
AU-emotion mappings, i.e., we can quantify each stimulus, Si,
as a 10-dimensional “stimulus vector” containing nonzero val-
ues at positions associated with active AUs for that stimulus and
zeros elsewhere. Note that, as is the case with mapping vectors,
the stimulus vector’s nonzero values at positions associated with
active AUs can be all ones (if assumed to be equally “active”) or
be values proportional to the amplitude (or “activity”) of the ac-
tive AUs.

For example, suppose that stimulus Si contains AU1, AU5,
and AU26 with amplitudes 0.1, 0.5, and 0.8 respectively (where
an amplitude of 1 would represent an AU at maximum inten-
sity). Then, formally, we can represent this particular stimulus,
Si, as the following stimulus vector:

Si =
[
.1 0 0 .5 0 0 0 0 0 .8

]
(E.4)

In case of multiple stimuli (Si for i = {1, . . . , N}), their map-
ping vectors can be vertically stacked in a single N×D “stimulus
matrix”, S.

Given that both a mapping (M) and set of stimuli (S) are
encoded as matrices in the same D-dimensional AU space, we
can discuss using kernels to generate quantitative predictors for
stimuli given a particular theory.
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Step 3: kernel functions

Kernel functions (or simply kernels) are functions that are,
broadly speaking, measures of similarity between two vectors.
Applied to our use case, we use kernel functions (κ) to quantify
the similarity, i.e. “closeness” in AU space, (φ) between a stim-
ulus with a known AU configuration (Si) and a mapping vector
for a specific emotion, indexed by j (Mj, e.g., happiness)1:

φij = κ(Si,Mj) (E.5)

Most (linear) kernel functions are based on the dot (inner)
product between the two vectors. In the current study, we pri-
marily use the cosine kernel, which normalizes the dot product
between two vectors with the product of their L2 (Euclidean)
norm:

κ(Si,Mj) =
SiMT

j

∥Si∥
∥∥∥Mj

∥∥∥ (E.6)

Without such normalization, similarity values monotoni-
cally increase with increasing magnitudes of the stimulus vector,
even if the stimulus vector increasingly deviates from the map-
ping.

Step 4: computing predictions

Although the similarity to a particular mapping vector can, gen-
erally speaking, be interpreted as being proportional to the evi-
dence for that particular class, it is not strictly speaking a predic-
tion. To generate a quantitative prediction for stimulus Si (i.e.,

1Instead of using measures of similarity between two vectors (i.e., “ker-
nels”), one could use measures of distances (δij) between two vectors instead
and subsequently invert it to get a similarity score again, i.e., φij = δ−1

ij . In
practice, we find that it does not make much of a difference in terms of pre-
dictive performance (see Supplementary Figure E.3).
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êi), one needs to formulate a decision function that maps the data
to a prediction. One possibility is to determine the prediction to
be the emotion (across C classes) that maximizes its similarity,
for some kernel function (κ), to the stimulus:

êi = argmax
j

κ(Si,Mj) (E.7)

In a slightly more sophisticated version of this decision func-
tion, we can generate probabilistic predictions instead of discrete
predictions. To do so, we normalize the similarity vector using
the softmax function, which returns a vector that sums to 1 such
that their elements can be interpreted as probabilities (i.e., the
probability of an emotion given a stimulus and mapping ma-
trix):

P(Ej|M, Si) =
exp(βφij)∑C
j=1 exp(βφij)

(E.8)

where β is the “inverse temperature” parameter — a scal-
ing parameter — which distributes relatively more mass onto the
largest values within the sequence of similarities. In our frame-
work, we can treat this parameter as a model hyperparameter
(i.e., a parameter that is not fit, but could be manually tuned us-
ing cross-validation). In our analyses, we use an inverse temper-
ature parameter of 1 (see Supplementary Figure E.2 for a com-
parison of the effect of different parameter values on model per-
formance).

Step 5: quantifying model performance

To evaluate the performance of each mapping, we can com-
pare their (discrete or probabilistic) emotion predictions for a
set of stimuli with emotion labels from participants who rated
the same stimuli. In other words, we can quantitatively assess
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how well the theoretical predictions match with actual behav-
ior. Model performance, or “score”, can be quantified using any
function (q), or “metric”, that takes as inputs a set of predicted
labels (ê) and a set of “true” labels (e) and returns a single num-
ber that summarizes the model performance, or “score”:

score = q(e, ê) (E.9)

Instead of returning a single, class-average model perfor-
mance estimate, some metrics are also able to return class-
specific model performance scores. In our analyses, we used
the “area under the curve of the receiver operating character-
istic” (AUROC) which summarizes the quality of probabilistic
predictions in a range from 0 to 1, where 0.5 is chance level per-
formance and 1 is a perfect prediction. Note that our proposed
method does not require a specific performance metric. We pre-
fer to use AUROC as it can be used for both discrete and prob-
abilistic predictions, is insensitive to class imbalance (i.e., un-
equal frequencies of target classes), and allows for class-specific
performance estimates.

Noise ceiling estimation (in detail)
Suppose that, for a given dataset, we find that a particular map-
ping yields a (class-average) AUROC score of 0.8 — what can
and should be concluded from this score? It is certainly above
chance level (a score of 0.5) but also substantially below perfect
performance (i.e., a score of 1). Here, we argue that one should
not interpret performance relative to a theoretical maximum
score, but relative to a noise ceiling & a concept borrowed from
systems neuroscience (Lage-Castellanos et al., 2019) — which
represents an upper bound that incorporates the within- and
between-subject “variance” in ratings. In other words, a noise
ceiling is a way to estimate an upper bound for predictive mod-
els that is adjusted for the “consistency” of the target variable.
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One important reason to quantify a model’s noise ceiling
is that is partitions the unexplained variance (i.e., part of the
data that was not predicted correctly) into unexplained but in
principle explainable variance (i.e., the noise ceiling minus the
model performance) and “irreducible” noise (i.e., the theoreti-
cal maximum performance minus the noise ceiling; see Figure
6.3). The amount of explainable variance in turn quantifies how
much there is to gain in terms of model improvement: if this
component is large, one might consider different or more com-
plex models; if this component is small (i.e., the model perfor-
mance is at or near the noise ceiling), one can conclude that the
model cannot be improved any further (which does not mean
that it is the correct model, however). When applied in the con-
text of AU-emotion mappings, the noise ceiling illustrates what
portion of the variance in emotion inferences can be, in princi-
ple, explained by AUs.

While noise ceilings are routinely used in systems and cog-
nitive neuroscience (Hsu et al., 2004; Huth et al., 2012; Kay et
al., 2013; Nili et al., 2014), existing methods for estimating noise
ceilings are limited to regression models (assuming a continu-
ous target variable, usually some type of brain measurement).
In the current study, however, we are dealing with classification
models, as we are trying to predict a categorical target variable
(i.e., categorical emotion ratings). Here, we propose a novel ap-
proach to estimate a noise ceiling for predictive performance of
classification models.

A crucial and necessary element for most noise ceiling esti-
mation methods, including the one proposed here, is the avail-
ability of repeated trials. Using repeated trials, the variance (or,
inversely, the “consistency”) in the target variable can be esti-
mated and used to estimate an upper bound on predictive per-
formance. In other words, a noise ceiling formalizes the idea
that a model can only perform as well as the consistency of
subjects. Importantly, trials are considered to be “repeats” if
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their representation in the model is the same. Thus, if a model
only considers AUs, then stimuli with the same AU configura-
tion are considered repeats, even if they differ in other features
(such as face identity). Moreover, repeated trials may occur
“within subjects” (e.g., a trial with a particular AU configura-
tion presented multiple times) or “between subjects” (e.g., a trial
with a particular AU configuration presented to different sub-
jects). Within-subject repeats can be used to estimate a within-
subject noise ceiling when working with subject-specific models
(which is common in cognitive neuroscience; Lage-Castellanos
et al., 2019) between-subject repeats can similarly be used to es-
timate a between-subject noise ceiling when working with a sin-
gle, between-subject model. While both within- and between-
subject variance are expected to affect the noise ceiling, in this
study we only consider between-subject variance (as our dataset
only contains between-subject repeats).

To illustrate the computation of the noise ceiling (for a
between-subject model), let us consider the following minimal
example. Suppose three subjects rated the same two facial ex-
pression stimuli (S1 and S2). As summarized in Table E.1, the
ratings are inconsistent across subjects, i.e., not each stimulus is
consistently rated as displaying the same emotion.

Table E.1 Hypothetical emotion ratings from three subjects in response
to two stimuli

Stimulus Ratings subject 1 Ratings subject 2 Ratings subject 3 Optimal pred.

S1 Anger Disgust Anger Anger

S2 Disgust Disgust Anger Disgust

As mentioned, the noise ceiling represents an upper bound
of predictive performance for a given set of observations. In
other words, the noise ceiling (nc) represents the performance
that an optimal model would obtain:
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nc = q(e, eoptimal) (E.10)
Here, the optimal model can be any conceivable type of

model, but is constrained in one crucial aspect: it should make
the same predictions for repeated observations. The reason for
this constraint is that, to a model, repeated observations repre-
sent identical input (i.e., stimuli parameterized by their stimulus
vector) and should logically receive the same prediction.

When working with discrete predictions (i.e., a single pre-
dicted label per trial), the optimal model predicts the mode
across repeated observations. In our example scenario, the opti-
mal model would thus predict S1 as “Anger” and S2 as “Disgust”.
The noise ceiling is subsequently computed as the performance,
for a particular performance metric (such as AUROC or simple
accuracy), of this optimal model given the true labels. In our
example above, the optimal model predicts two out of three rat-
ings per stimulus correctly, resulting in a class-average AUROC
noise ceiling of 0.6667.

The disadvantage of using discrete predictions when com-
puting the noise ceiling is that it may result in multiple modes
(e.g., a given stimulus might be rated “anger” in 50% of subjects
and “disgust” in the other 50% of subjects). One could pick a
random mode as the optimal prediction, but this may arbitrar-
ily impact the class-specific noise ceiling for the classes repre-
sented by the tied modes. As an alternative, we suggest using
probabilistic instead of discrete predictions. When working with
probabilistic predictions, the optimal model does not predict the
mode, but a probability distribution across labels equal to the
proportion of each label. Formally, for a given stimulus, Si, with
R repeats, the probability of each class, P(Ej), is computed as the
proportion of labels, ei, equal to that class:

P(Ej|Si) = 1
R

R∑
k=1

1(eik = Ej) (E.11)
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Figure E.1 Difference in class-average model performance (AUROC) be-
tween discrete and probabilistic predictions.

where 1 represents an indicator function returning 1 when
the emotion label eik is equal to emotion label Ej and 0 other-
wise. Therefore, in our example data, the optimal prediction for
each repetition of S1 is [0.667, 0.333] and the optimal predic-
tion for each repetition of S2 is [0.667, 0.333], where the numbers
represent the probability of “Anger” and “Disgust” respectively.
Similar to the noise ceiling based on discrete predictions, we can
compute the noise ceiling as the performance, for a particular
metric, of the optimal model given the true labels. In the above
example, the class-average AUROC noise ceiling would coinci-
dentally, just like in the scenario with discrete predictions, be
0.6667.

E.2 Supplementary figures
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Figure E.2 Performance of different models for different values of the
“inverse temperature” (β) parameter. A cosine kernel was used.
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Figure E.3 Performance of different models for different kernel functions.
The cosine, sigmoid, and linear kernels are measures of similarity, but the
Euclidean, L1, and L2 kernels measure distance. For these distance func-
tions, the distances were converted to similarities by inverting them. A fixed
“inverse temperature” (β) parameter of 1 was used.
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Figure E.4 Results from the simulation analysis with random mapping
matrices in which the number of AUs per configuration (A) and the num-
ber of configurations per output class (B) were systematically varied. Bars
represents the average AUROC score across 1000 simulations (error bars
represent ±1 SD).



Figure E.5 Changes in model performance (AUROC) for each emotion andmapping after ablating an AU. Error bars indicate
a 95% confidence interval obtained with 1000 bootstraps of the data.
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Figure E.6 . The proportion of explained AUROC (from 0.5 to top of
bar), unexplained AUROC (from top of bar to noise ceiling), and irreducible
noise/variance due to individual differences (from noise ceiling to 1.0) ex-
pressed as a percentage of the total AUROC.

Table E.2 AUs with the largest ablation affects per emotion across map-
pings

Emotion AU Δ AU-
ROC

Affected mappings

Anger AU09 -0.024 Jack/Schyns

AU10R -0.017 EMFACS, Jack/Schyns

AU10L -0.017 EMFACS, Jack/Schyns

AU22 -0.012 Matsumoto, EMFACS, Jack/Schyns

Disgust AU09 -0.057 Matsumoto, Keltner, Cordaro (ref.), Cordaro (ICP),
EMFACS, Jack/Schyns

AU10L -0.035 Darwin, Matsumoto, Cordaro (ICP), EMFACS,
Jack/Schyns

AU10R -0.026 Darwin, Matsumoto, Cordaro (ICP), EMFACS,
Jack/Schyns

AU25 0.020 Darwin, Matsumoto, Keltner, Cordaro (ICP), EMFACS

Fear AU20R -0.036 Darwin, Matsumoto, Keltner, Cordaro (ref.), EMFACS,
Jack/Schyns

353



E.2. Supplementary figures

AU20L -0.034 Darwin, Matsumoto, Keltner, Cordaro (ref.), EMFACS,
Jack/Schyns

AU04 -0.024 Matsumoto, Keltner, Cordaro (ref.), EMFACS,
Jack/Schyns

AU05 -0.022 All

AU02L 0.022 Darwin, Matsumoto, Keltner, Cordaro (ref.), Cordaro
(ICP), EMFACS

AU02R 0.013 Darwin, Matsumoto, Keltner, Cordaro (ref.), Cordaro
(ICP), EMFACS

Happy AU12L -0.046 All

AU12R -0.038 All

AU14L -0.012 Jack/Schyns

AU25 -0.012 Keltner, Cordaro (ICP), Jack/Schyns

AU14R -0.011 Jack/Schyns

AU13 -0.010 Jack/Schyns

AU06R 0.017 All

AU06L 0.017 All

Sadness AU04 -0.048 Matsumoto, Keltner, Cordaro (ref.), Cordaro (ICP),
EMFACS, Jack/Schyns

AU43 -0.040 Cordaro (ICP), Jack/Schyns

AU17 -0.024 Matsumoto, Keltner, EMFACS, Jack/Schyns

AU15 -0.010 Darwin, Matsumoto, Keltner, EMFACS, Jack/Schyns

AU05 0.030 Cordaro (ref.)

AU06R 0.021 Keltner, EMFACS

AU06L 0.017 Keltner, EMFACS

AU11L 0.010 EMFACS

Surprise AU01 -0.041 All

AU05 -0.041 All

AU26 -0.036 All

AU27 -0.033 Cordaro (ICP), EMFACS, Jack/Schyns
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AU02L -0.021 All

Note: Only AUs with an absolute change in AUROC larger than 0.01 are included. The
affected mappings column indicates which mappings contained this AU.
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Supplement to Chapter 7
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Figure F.1 The explained variance ratio of each PCA component (bars;
left y-axis) and the cumulative explained variance ratio (dashed line; right
y-axis) for the PCA done on the dynamic features (top) and static features
(bottom).
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Figure F.2 Distribution of the categorical emotion labels (bars height rep-
resents the average proportion; dots represent individual participants; top)
and the distribution of the valence ratings (middle) and arousal rating (bot-
tom), shown separately for the optimization set (left) and test set (right). In
the valence and arousal subplots, the filled area represents the distribution
of the ratings pooled over participants and the lines represents the distribu-
tion of the ratings of individual participants. The valence and arousal distri-
butions were created using kernel density estimation as implemented in the
Python package seaborn (which uses the scipy function gaussian_kde
with Scott’s rule for bandwidth selection).
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Figure F.3 Cross-validated model performance on optimization set, ob-
tained by repeated 10-fold cross-validation. Because the optimization set
does not contain repeated observations, the noise ceiling from the test set
is visualized.

Figure F.4 Visualization of the comparison between the sum of static
and dynamic model performance (orange) and the combined model perfor-
mance (blue) for the categorical emotion model (left) and valence/arousal
model (right).
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Figure F.5 Confusion matrices for the categorical emotions models (left)
and regression plots for the valence model (middle) and arousal model
(right), separately for the models based on dynamic information (top) and
static information (bottom). The confusion matrices are normalized by the
sum across rows, thus representing the recall (or sensitivity) on the diago-
nal. The categorical emotion classifier based on dynamic information rel-
atively frequently misclassifies “anger” and “disgust” (and vice versa) as
well as “surprise” and “fear” (and vice versa), replicating earlier findings
from human ratings (Jack et al., 2014, 2009). In contrast, the confusion
rates for the static emotion classifier are relatively uniform across categor-
ical emotion pairs. Different colors in the regression plot represent ratings
from different participants. The regression plots for the valence and arousal
models (middle and right) show that both the models based on dynamic and
static features tend to underestimate the magnitude of the predictions (i.e.,
few predictions are made above 0.5 or below -0.5). These attenuated pre-
dictions is a direct consequence of the strong regularization applied to the
regression models (i.e., λ = 500), which causes the parameters (i.e., β̂) to
be shrunk towards zero, thus shrinking predictions (Xβ̂) towards the mean
as well.
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Figure F.6 Posterior distributions for the first ten dynamic features (X1 −
X10; in rows) for the inverted categorical emotion model (left; different emo-
tions as separate lines), the inverted valence model (middle; different levels
as separate lines), and the inverted arousal model (right; different levels as
separate lines). The dashed vertical lines represent the value chosen for
the reconstructions (i.e., the midpoint of the 5% HDI interval). The drop at
the edges of the posterior is an artifact induced by the kernel density esti-
mation.
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Figure F.7 Posterior distributions for the first ten static features (X1 −X10;
in rows) for the inverted categorical emotion model (left; different emotions
as separate lines), the inverted valence model (middle; different levels as
separate lines), and the inverted arousal model (right; different levels as
separate lines). The dashed vertical lines represent the value chosen for
the reconstructions (i.e., the midpoint of the 5% HDI interval). The drop
at the edges of the posterior is an artifact induced by the kernel density
estimation.
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Figure F.8 Correlations between dynamic categorical emotion, valence,
and arousal reconstructions. The different affective properties are delin-
eated by the magenta borders. The green boxes highlight noteworthy cor-
relations between high and low arousal and negative emotions (anger, dis-
gust, and fear) and happiness/sadness, respectively. The yellow borders
highlight the noteworthy correlations between positive and negative valence
and happiness and negative emotions (anger, disgust, and fear), respec-
tively.
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Figure F.9 Correlations between static categorical emotion, valence, and
arousal reconstructions. The different affective properties are delineated by
the magenta borders. The green boxes highlight noteworthy correlations
between high and low arousal and negative emotions (anger, disgust, and
fear) and happiness/sadness, respectively. The yellow borders highlight the
noteworthy correlations between positive and negative valence and happi-
ness and negative emotions (anger, disgust, and fear), respectively.
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Appendix G

Data, code, and educational
materials

During my PhD, I published my code and data whenever pos-
sible. In Table G.1, all publicly available resources are listed per
chapter.

Table G.1 Chapter resources

Chapter Resource Platform DOI / URL

2 Code Github https://github.com/lukassnoek/SharedStates

Data OpenNeuro 10.18112/openneuro.ds002547.v1.1.0

3 Code Github https://github.com/lukassnoek/MVCA

Data OpenNeuro 10.18112/openneuro.ds002785.v2.0.0

4 Overview Website https://nilab-uva.github.io/AOMIC.github.io/

Code Github https://github.com/NILAB-UvA/AOMIC-
common-scripts
https://github.com/NILAB-UvA/ID1000

https://github.com/NILAB-UvA/PIOP1

https://github.com/NILAB-UvA/PIOP2

Data OpenNeuro 10.18112/openneuro.ds003097.v1.2.1

10.18112/openneuro.ds002785.v2.0.0

10.18112/openneuro.ds002790.v2.0.0

NeuroVault https://identifiers.org/neurovault.collection:7105

https://identifiers.org/neurovault.collection:7103
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https://identifiers.org/neurovault.collection:7104

5 Pre-
registration

OSF osf.io/gdtk9

Code Github https://github.com/lukassnoek/MorbidCuriosityFMRI

Data

6 Code Github https://github.com/lukassnoek/hypothesis-
kernel-analysis

7 Code Github https://github.com/lukassnoek/static-vs-
dynamic

Note: OpenNeuro repositories contain raw and preprocessed data from individual par-
ticipants, while NeuroVault contains group-level aggregate data (e.g., statistical brain maps
from group-level analyses).

As part of my PhD, I also (co-)developed and taught several
courses, of which I made the course material publicly accessible.
These courses and the location of the materials are listed in Table
G.2.

Table G.2 Teaching resources

Course name Description Co-developers URL

Programming in
Psychological
Science

An introduction to
Python and
PsychoPy

Emma Schreurs https://lukas-
snoek.com/introPy

Neuroimaging:
BOLD-fMRI

An introduction to
fMRI data analysis

Noor Seijdel,
Jessica Loke, & H.
Steven Scholte

https://lukas-
snoek.com/NI-edu

Neuroimaging:
pattern analysis

Multivariate
analyses of
neuroimaging data

Noor Seijdel, Lynn
Soerensen, & H.
Steven Scholte

https://lukas-
snoek.com/NI-edu
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Nederlandse samenvatting
(Summary in Dutch)

Het belang van voorspellen: onderzoek naar de psyche en het brein
in het tijdperk van machine learning

Onderzoek naar de psyche en brein is allang niet meer de
kwalitatieve wetenschap van Sigmund Freud en William James.
Introspectie van de geest heeft plaatsgemaakt voor een versie van
de wetenschappelijke methode waarin gedrag, mentale proces-
sen, en de breinpatronen onderliggend hieraan kwantitatief gea-
nalyseerd worden. De geobserveerde gedrags- of breindata wor-
den gebruikt om de hypotheses van de psycholoog of (cognitief)
neurowetenschapper te toetsen aan de hand van de bij studenten
welbekende statistische testen zoals de t-test, ANOVA, en corre-
laties. Deze statistische testen geven een simpel, binair (ja/nee)
antwoord op zijn of haar wetenschappelijke hypothese, die de
onderliggende theorie kan ondersteunen of juist ontkrachten.

Deze methode heeft ons veel geleerd over menselijk gedrag
en de werking van het brein. Dankzij deze manier van onder-
zoek doen weten we bijvoorbeeld dat we stimuli met conflicte-
rende eigenschappen (zoals het woord “rood” in de kleur blauw)
invloed heeft op onze reactietijd (het Stroop effect), dat we ons-
zelf stelselmatig overschatten (het Dunning-Kruger effect), en
dat negatieve informatie ons meer beïnvloedt dan positieve in-
formatie (het negativity effect). In de introductie van dit proef-
schrift vraag ik me echter af of deze aanpak van het vaststellen
van dergelijke effecten door middel van simpele, binaire hypo-
theses en statistische testen voldoende is om de immense com-
plexiteit van de menselijke psyche en brein echt te doorgronden.
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Ik stel dat wij, als psychologen en cognitief neurowetenschap-
pers, ons kunnen laten inspireren door de manier van onder-
zoek doen in de vakgebieden van kunstmatige intelligentie en
specifiek machine learning.

In deze vakgebieden staat, in plaats van het vaststellen van
effecten, het belang van voorspellen centraal. Met machine
learning tracht men specifieke taken of problemen, zoals het her-
kennen van gezichten in foto’s, te automatiseren met complexe
modellen. Belangrijk hierbij is om de taak te formuleren als een
“voorspellingsprobleem”, waarbij het model probeert accurate
voorspellingen te maken op basis van de data die het wordt gege-
ven, zoals de aan- of afwezigheid van een gezicht op basis van de
collectie pixels in een foto. Machine learning modellen zijn vaak
extreem krachtig en flexibel, waardoor ze in staat zijn complexe
taken uit te voeren die de complexiteit van menselijk gedrag en
het brein benadert.

In de afgelopen jaren zijn psychologen en met name cogni-
tief neurowetenschappers dergelijke machine learning modellen
meer en meer gaan gebruiken om gedrag en breinprocessen te
modelleren. In deze context kunnen deze modellen worden ge-
ïnterpreteerd als hypotheses over het mechanisme onderliggend
aan het bestudeerde gedrag, mentale capaciteit, of breinproces.
Zo zijn bijvoorbeeld objectherkenning modellen uit de machi-
ne learning wereld succesvol gebruikt om de menselijke visuele
cortex te modelleren. Deze en andere succesvolle toepassingen
van machine learning in de psychologie en neurowetenschap-
pen demonstreren dat het gebruik van voorspellende, complexe
modellen potentie heeft om een alternatieve en complementaire
wetenschappelijke methode te worden ten opzichte van de tra-
ditionele manier van onderzoek doen.

De toepassing van de onderzoeksmethodiek en modellen
van machine learning in de psychologie en neurowetenschap-
pen is verre van triviaal. Het vergt, onder andere, het (gedeelte-
lijk) loslaten van theorie en theorie-gedreven hypotheses en het
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omarmen van complexe modellen die niet altijd makkelijk inter-
preteerbaar zijn. Ook is de variatie en hoeveelheid van de data
die wordt gebruikt voor de modellen een stuk belangrijker dan
in de traditionele methode. De hoofdstukken in dit proefschrift
behandelen verschillende facetten die komen kijken bij het toe-
passen van voorspellende modellen in psychologisch en cogni-
tief neurowetenschappelijk onderzoek, zoals het toepassen van
machine learning modellen op functionele MRI data (hoofd-
stuk 2) en gedragsdata (hoofdstuk 6 en 7), de interpretatie van
dergelijke voorspellende modellen (hoofdstuk 3), het belang van
openbare datasets (hoofdstuk 4), maar ook het nut en plaats van
hypothese-gedreven onderzoek (hoofdstuk 5).

In hoofdstuk 2 onderzochten we of het ervaren van emoties
(van jezelf) en het begrijpen van emoties (van anderen) dezelf-
de breinprocessen rekruteren door middel van een innovatieve
toepassing van machine learning. Tijdens het meten van func-
tionele MRI data lieten we proefpersonen twee taken doen: één
waarbij ze specifieke emotie-gerelateerde acties, interoceptieve
gevoelens, of situaties moesten inbeelden (de “zelf-taak”) en één
waarbij ze zich moesten focussen op de emotie-gerelateerde ac-
ties, mogelijke interoceptieve gevoelens, of situaties van men-
sen afgebeeld in emotionele afbeeldingen (de “ander-taak”). We
trainden vervolgens een machine learning model om de drie
emotie-componenten (actie, interoceptie, en situatie) geobser-
veerd tijdens de zelf-taak te onderscheiden op basis van de on-
derliggende breinpatronen. Ditzelfde model pasten we vervol-
gens ook toe op de breinpatronen van de ander-taak. De ac-
curate voorspelling van de emotie-componenten in de zelf-taak
liet zien dat de drie emotie-componenten duidelijk spatieel gese-
gregeerd zijn in verschillende breinnetwerken. De accurate ge-
neralisatie van het model naar de data van de ander-taak toont
verder aan dat deze breinnetwerken geassocieerd met het erva-
ren van je eigen emoties op eenzelfde manier gerekruteerd wor-
den bij het begrijpen van andermans emoties. Naast het aanto-
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nen van de overlap in de neurale netwerken van zelf- en ander-
georienteerde emotionele processen, demonstreert dit onder-
zoek ook de mogelijkheid om machine learning modellen in te
zetten om de gedeelde informatie van twee (neurale) processen
aan te tonen.

Een saillant nadeel van (complexe) machine learning mo-
dellen is dat het vaak niet direct duidelijk is welke aspecten van
de data ze gebruiken voor hun voorspellingen. In hoofdstuk 3
onderzochten we hoe we ervoor kunnen zorgen dan machine
learning modellen sommige aspecten van de data negeren. Op
deze manier kunnen deze aspecten, waarnaar wij refereren als
confounds, uitgesloten worden als “verklaring” voor de voorspel-
lingen van een model. We vergeleken verschillende methodes
uit de literatuur om te corrigeren voor confounds in machine
learning modellen op basis van computersimulaties en empiri-
sche analyses van modellen die sekse voorspellen op basis van
structurele MRI scans terwijl er voor de factor “hersengrootte”
gecontroleerd wordt. Onze resultaten lieten zien dat bestaande
methodes ofwel te optimistisch waren (ze controleerde niet goed
genoeg voor de confounds) ofwel te pessimistisch waren (ze fil-
terden teveel informatie uit de data). Als oplossing voor deze
tekortkomingen stelden wij een nieuwe methode die, door elke
stap in de machine learning pipeline correct te “cross-valideren”,
op een juiste en efficiënte manier corrigeert voor confounds. De
voorgestelde methode in dit onderzoek is een belangrijke stap in
het beter leren begrijpen van de logica waarmee voorspellingen
van machine learning modellen tot stand komen, wat een van de
belangrijkste nadelen van dergelijke modellen ondervangt.

Door de complexiteit van moderne machine learning mo-
dellen, hebben ze grote hoeveelheden data nodig om accurate
en robuuste associaties in de data te leren. De beschikbaarheid
van grote en gevarieerde datasets is daarom cruciaal voor de ont-
wikkeling van machine learning modellen. In hoofdstuk 4 be-
schrijven wij onze bijdrage hieraan in de vorm van de Amster-
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dam Open MRI Collection (AOMIC), een dataset met structure-
le, functionele, en diffusie MRI data fysiologische data, en uit-
gebreide en goed geannoteerde gedragsdata en psychometrische
gegevens. AOMIC is geformat aan de hand een algemeen geac-
cepteerde standaard (de Brain Imaging Data Structure) en bevat
zowel ruwe als opgeschoonde data, zodat het zowel voor onder-
zoekers met en zonder MRI-ervaring gebruikt kan worden. Met
AOMIC hopen wij zowel het gebruik van publieke data te stimu-
leren als anderen te inspireren om hun eigen (MRI) data publiek
toegankelijk te maken.

De manier van onderzoeken in het machine learning veld
heeft een sterk exploratief karakter. Hoewel ik denk dat deze
manier van onderzoek doen duidelijke voordelen heeft, ben ik
tegelijkertijd van mening dat er een plek is voor confirmatief on-
derzoek op basis van theoretische gemotiveerde hypotheses ken-
merkend voor de traditionele onderzoeksmethode. Deze tradi-
tionele manier van hypothese testen is bij uitstek geschikt om
belangrijke aannames in een bepaald onderzoeksdomein of the-
orie te testen. Hoofdstuk 5 is hier een voorbeeld van. Dit hoofd-
stuk beschrijft een functionele MRI studie die onderzoekt of
de neurale correlaten van nieuwsgierigheid voor negatieve in-
formatie, met de vooraf geregistreerde hypothese dat het ex-
pliciet kiezen voor negatieve informatie belonings-gerelateerde
hersengebieden activeert. Deze hypothese betwist huidige the-
orieën over nieuwsgierigheid, want de meest duidelijke indica-
tor van beloning — een prettige ervaring — mist in nieuwsgie-
righeid voor negatieve informatie. Onze resultaten toonden aan
dat, in lijn met onze vooraf geregistreerde hypothese, belonings-
gerelateerde hersengebieden zowel activeerden in reactie op zo-
wel positief als negatieve informatie. Deze bevindingen nuance-
ren modellen van besluitvorming, waardering en nieuwsgierig-
heid, en zijn een belangrijk uitgangspunt bij het overwegen van
de waarde van het actieve exploratie van negatieve informatie.
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Hoofdstuk 6 beschrijft een studie over een nieuwe manier
om verbale hypotheses te vertalen naar kwantitatieve, voorspel-
lende modellen. Deze methode hebben we toegepast in de con-
text van hypotheses over de relatie tussen de perceptie van cate-
gorische emoties (boosheid, walging, angst, blijdschap, verras-
sing, en verdriet) en de beweging van verschillende spieren in
het gezicht (ook wel “action units”, AUs, genoemd). We vertaal-
den verschillende hypotheses uit de literatuur over deze emotie-
AU relaties naar modellen en evalueerden hun voorspellende
vermogen aan de hand van emotie-beoordelingen van gezichten
met willekeurige combinaties van AUs door een groep proef-
personen. We vonden dat deze modellen een substantieel deel
van de variatie in emotie-beoordelingen accuraat voorspelden,
maar ook dat bijna alle modellen tekort schoten vanwege het
missen van cruciale AUs of het includeren van overbodige AUs
voor sommige emoties. Door systematische evaluatie van de-
ze tekortkomingen konden we vervolgens nieuwe, meer accu-
rate modellen creëren. Daarnaast lieten onze resultaten zien dat
proefpersonen grote verschillen laten zien in de emotie die ze
zien in dezelfde set met gezichten, wat betekent dat universele
modellen van emotieperceptie op basis van gezichtsuitdrukkin-
gen sterk gelimiteerd in hun accuratesse. Naast het ontwikkelen
van een nieuwe methode, benadrukt deze studie ook het nut van
kwantitatieve, voorspellende modellen voor het ontwikkelen en
evalueren van wetenschappelijke hypotheses.

Hoofdstuk 7 gaat over een onderzoek waarin we model-
len ontwikkelen om emotionele beoordelingen van gezichten
met willekeurige uitdrukkingen te voorspellen. We onderzoch-
ten specifiek in hoeverre dynamische informatie (bewegingen
van het gezicht) en statische informatie (morfologie van het ge-
zicht) bijdragen aan de perceptie van emotionele informatie. We
vonden dat dynamische en statische informatie allebei een sub-
stantieel en onafhankelijk deel van de variatie in emotionele be-
oordelingen verklaren. Daarnaast lieten reconstructies van emo-
tionele gezichten op basis van de geschatte modellen zien dat
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statische en dynamische informatie zich verschillend uiten in
de topologie van het gezicht, in tegenstelling tot wat vaak wordt
verondersteld in de literatuur. Deze studie laat zien dat mensen
niet alleen de gezichtsuitdrukking zelf (de dynamische informa-
tie) verwerken bij het beoordelen van emotionele staat van ande-
ren, maar ook het gezicht zelf (de statische informatie), wat be-
langrijke kanttekeningen plaatst bij het alomtegenwoordige ge-
bruik van statische stimuli in emotieonderzoek en kunstmatige
intelligentie-toepassingen.

De hoofdstukken uit dit proefschrift benadrukken dat het
gebruik van voorspellende modellen meer omvat dan alleen een
verandering van de analysetechniek. Als we deze methodologie
(meer) willen integreren in de psychologie en cognitieve neu-
rowetenschappen, dan moeten we beginnen bij het herevalue-
ren een groot deel van de traditionele empirische cyclus. Als we
kiezen voor een sterkere focus op voorspelling, dan moeten we
andere vragen gaan stellen (over mechanismes, niet over effec-
ten); dan moeten we de complexiteit van menselijke cognitie en
gedrag omarmen en datasets en modellen creëren die deze com-
plexiteit weerspiegelen; en dan moeten we wellicht interpreteer-
baarheid van modellen opofferen voor voorspellend vermogen.
In andere woorden, het is hoogst tijd om te profiteren van de
mogelijkheden die tijdperk van machine learning ons te bieden
hebben.
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