
Decoding analyses
Neuroimaging: Pattern Analysis 2017



Scope

◉ Conceptual explanation of decoding/machine 
learning (ML) and related concepts;

◉ Not about mathematical basis of ML 
algorithms!



Learning goals

◉ Understand the difference (and surprising overlap) 
between statistics and machine learning;

◉ Recognize the major different "flavors" of decoding 
analyses;

◉ Understand the concepts of overfitting and 
cross-validation

◉ Know the most important steps in a decoding 
analysis pipeline;



Contents

◉ PART 1: what is machine learning?

○ … and how does it differ from statistics?

○ What "flavors" of decoding analyses are there?

○ Important ML concepts: cross-validation, overfitting

◉ PART 2: how to set up a ML pipeline?

○ From partitioning to significance testing



PART 1:
WHAT IS MACHINE LEARNING? 



Decoding

Terminology

◉ Decoding ≈ machine learning
○ Decoding is the neuroimaging-specific 

application of machine learning algorithms 
and techniques;

Algorithms

Cross-validation

Feature-selectionRegularization

Machine 
learning



Machine learning = statistics?

◉ Defining machine learning is (in a way) trivial:

○ Algorithms that learn how to model the data 
without an explicit instruction how to do so;

◉ But how it that different from traditional 
statistics?

○ Like the familiar GLM (linear regression, t-tests)?

○ Similar, but different ...



Machine learning = statistics?

◉ They have different origins:

○ Statistics is a subfield from mathematics

○ Machine learning is a subfield from computer science

○ "Science vs. engineering"

◉ They have a different goal:

○ Statistical models aim for inference about the population based on a 
limited sample

○ Machine learning models aim for accurate prediction of new samples 



Machine learning = statistics?

◉ Psychologists (you included) are taught statistics: how to 
make inferences about general psychological "laws" 
based on a limited sample:

○ "I've tested the reaction time of 40 people (sample) before and 
after drinking coffee …

○ ... and based on the significant results of a paired sample t-test, 
t(39), p < 0.05 (statistical test) …

○ … I conclude that caffeine improves reaction times (statement 
about population)



Machine learning = statistics?

◉ Crucially: we are quite certain that our findings in the sample 
will generalize to the population, if and only if assumptions of 
the model hold (and sample = truly random)

◉ Uses concepts like standard errors, confidence intervals, and 
p-values to generalize the model to the population

Sample Statistical 
model

fit/apply
Population

infer

(if assumptions hold!)

Confidence intervals Standard errors

P-values



Machine learning = statistics?

◉ ML models do not aim for inference, but aim 
for prediction

○ Instead of assuming findings will generalize to the 
population, ML analyses in fact literally check 
whether it generalizes;

○ It's like they're saying: "I don't give a shit about 
assumptions - if it works, it works."



Machine learning = statistics?

◉ Instead of assuming that the findings from the model will 
generalize beyond the sample, ML tests this explicitly by 
applying this to ("predicting") a new sample 

◉ New sample is concretely part of your dataset! (not like 
"the population")

ML 
modelSample

fit/apply
New sample

Explicit generalization

(prediction to new sample)

Cross-validation



Machine learning = statistics?

Sample Statistical 
model

fit/apply
Population

inference

(if assumptions hold!)

Sample
ML 

model

fit/apply
New sample

Explicit generalization

(prediction to new sample)

Im
plic

it

Explicit



Machine learning = statistics?

◉ While having a different goal, in the end both 
types of models simply try to model the data;

◉ Take for example linear regression:

○ It has a statistics 'version' (as defined in the GLM) …

○ … and an ML 'version' (using a mathematical 
technique called gradient descent to find the 
optimal βs)



So …?

◉ As said, statistics and ML are the same, yet different;

○ Both aim to model the data (with different techniques) ...

○ … but have a different way to generalize findings

◉ "But why do we have to learn a whole new paradigm 
(ML), then?", you might ask ...



Good question!

◉ Traditional statistical models do not fare well with 
high-dimensional problems

○ In decoding: dimensionality = amount of voxels

◉ Neuroimaging data likely violates many assumptions 
of traditional statistical models …

◉ Sometimes, decoding analyses actually need 
prediction: e.g. predict clinical treatment outcome



Back to the brain

What happens in that arrow?

"Features in the world" "Features in the brain"

DECODING Xy =   model(    )



Machine learning model

◉ Machine learning algorithms try to model the 
features (X) such that they approximate the 
target (y)

◉ In fMRI (decoding): can the voxel activities (X) 
be weighted such that they approximate the 
feature-of-interest (y)?



Machine learning model

ŷ = f(X)The predicted target 
variable, numerically 
coded (WORLD)

Samples-by-features 
matrix (BRAIN)

ML algorithm that 
specifies how to weigh X

(Logistic) 
regression

Support vector machines

Decision trees



f(X) is simply weighting!

ŷ = f(X) 

β denotes the weighting 
parameters (or just "parameters" 
or "coefficients") for our features 
(in X)

βX denotes the (matrix) product 
of the weighting parameters and 
X - which means that y is 
approximated as a weighted 
linear combination of features

 = βX



Linear vs. non-linear

◉ Disclaimer: the "βX" term implies that it is a 
linear model (i.e. a linear weighting of features)

◉ Decoding analyses almost always use linear 
models, because most world-brain relations 
are probably linear (cf. Naselaris & Kay)

◉ Non-linear models exist, but are rarely used

○ Also because they often perform worse than linear 
models



f(X) is weighting!

ŷ = f( X ) 



f(X) is simply weighting!

ŷ = f(     ) 
 1   2   …   k
    Voxels

Sa
m

p
le

s

0

1

2

0

1

2



f(X) is simply weighting!

ŷ = β
 1   2   …   k
    Voxels

Sa
m

p
le

s

0

1

2

0

1

2



f(X) is simply weighting!

ŷ =  
 1   2   …   k
    Voxels

Sa
m

p
le

s

×

0

1

2

0

1

2

1
2
…
k

β is just a vector of length 
n-features that specifies 
the weight for each feature 
to optimally approximate y



Summary

◉ ML models (f) find parameters (β) that weigh 
features (X) such that they optimally 
approximate the target (y)

◉ Applied to fMRI: we decode from the brain (X) 
to the world (y) by weighing voxels! 



Questions so far?



Flavors of ML algorithms

◉ ML algorithms - f() - exist in different 'flavors'

What type of ML model 
should I choose?

Non-linear Linear

What do you assume is the relation between 
features and the target? (Probably linear …)

What is the nature of your target feature?

Classification

Categorical

Regression

Continuous



Regression vs. classification

Regression

◉ Target (y) is continuous

◉ "Predict someone's weight 
 based on someone's height"

◉ Example models: linear 
regression, ridge regression, 
LASSO

Classification

◉ Target (y) is categorical

◉ "Predict someone's gender based 
 on someone's height"

◉ Example models: support vector 
machine (SVM), logistic 
regression, decision trees, 



Regression

◉ Regression models a continuous variable
W

ei
gh

t 
(y

)

Height (X)
100                 200 (cm)

40
   

   
   

   
   

   
   

   
  1

00
 (K

G
)

ŷ
weight

 = βX* = β
height

X
height

   ŷ
weight

 = 0.5X
height

 

* We are ignoring the intercept 
  here for simplicity

This is exactly like 'univariate' regression 
models, but instead of modelling in the 
encoding direction, this is in the decoding 
direction!



Regression vs. classification

Height (X
1
)

150                       200 (cm)

♂       ♀ ♀♀ ♀♀ ♀ ♀ ♂       ♂       ♂       ♂       ♂       ♀ ♀♀ ♂       

◉ Classification models a categorical variable

ŷ = squash(β
height

X
height

)   y = {   ,    }♀ ♂       

"squash()" is a function that forces 
the output of βX to be categorical

"If βX > 5, then ŷ = ♂
 otherwise ŷ = ♀ 

ŷ = squash(20.5X
height

)   



Test your knowledge!

Subjects perform a memory task in which they have to give responses. 
Their responses can be either correct or incorrect. 

I want to analyze whether the patterns in parietal cortex are predictive of 
whether someone is going to respond (in)correctly.

Classification Regression??



Test your knowledge!

During fMRI acquisition, subject see a set of images of varying emotional 
valence (from 0, very negative, to 100, very positive).

I want to decode stimulus valence from the bilateral insula.

Classification Regression??



Test your knowledge!

Subjects perform an attentional blink task in the scanner (during which we 
measure fMRI).

I want to predict whether someone has a relatively high IQ (>100) or low IQ 
(<100) based upon the patterns in dorsolateral PFC during the attentional 
blink task.

Classification Regression??



Regression & classification

◉ Both types of model try to approximate the 
target by 'weighting' the features (X)

○ Additionally, classification algorithms need a 
"squash" function to convert the outputs of βX to a 
categorical value

◉ The examples were simplistic (K = 1); usually, 
ML models operate on high-dimensional data!



Dimensionality

Height (X)
150                 200 (cm)

♂       ♀ ♀♀ ♀♀ ♀ ♀ ♂       ♂       ♂       ♂       ♂       ♀ ♀♀ ♂       

K = 1

Height (X
1
)

150                 200 (cm)

♂       
♀ ♀♀ ♀♀

♀ ♀ ♂       ♂       ♂       

♂       ♂       
♀ ♀

♀ ♂       W
ei

gh
t 

(X
2)

K = 2

♂       

♂       

Length (X
1) W

eight (
X 2

)

A
ge

 (
X

3
)

♀
♀

♀
♀
♀
♀

♀
♀

♂       
♂       ♂       

♂       ♂       

K = 3

K = >3?
Difficult to visualize, but process is the same: weighting 
features such that a multidimensional plane is able to separate 
classes as well as possible in K-dimensional space



Model performance

◉ We know what ML models do (find weighting 
parameters β to approximate y), but how do 
we evaluate the model? 

◉ In other words, what is the model 
performance?



Model performance

38

Regression

W
ei

gh
t

Height
100                        200 (cm)

40
   

   
   

   
   

   
   

   
   

   
  1

0
0

 (
K

G
)

R2 = 0.92 [explained variance]
MSE = 8.2 [mean deviation from prediction] 

Accuracy =   18 / 20 = 90% [percent correct]

Classification

Height
150                       200 (cm)

♂       

♀

♀
♀ ♀♀ ♀

♀
♂       

♂       

♂       
♂       

♂       
♀

♀

♀♂       
♂       

♂       

♂       



Model performance 

◉ Performance is often evaluated not only on the 
original sample, but also on a “new sample”  

◉ This process is called “cross-validation”



Model fitting

Model fitting & prediction

 1   2   …   k
    Voxels

- o + - o +

- = neg 
o = neu
+ = pos

ŷ = 
-

o

+

β

“Train-accuracy” 
is 90%

“Train” set
 (original sample)

“Test” set
 (new sample)

 1   2   …   k
    Voxels

-

o

+
Model cross-validation

“Test-accuracy” 
is 85%



W
ei

gh
t

Height100  200 (cm)

40
   

   
   

   
   

   
   

   
   

 1
0

0
 (

K
G

)

Train

Height100  200 (cm)

Model performance

◉ Model performance is often evaluated on a new ("unseen") 
sample: cross-validation

ML 
model New sample

Cross-validate model

fit

R2 = 0.82

Cross-validation

(prediction to new sample)

R2 = 0.64



W
ei

gh
t

Height100  200 (cm)

40
   

   
   

   
   

   
   

   
   

 1
0

0
 (

K
G

)

Model performance

◉ Model performance is often evaluated on a new ("unseen") 
sample: cross-validation

Sample
ML 

model
fit

New sample

Cross-validate model

Acc = 0.90

♀

♀♀

♀
♀

♀♀
♀

♀

♂       

♂       ♂       
♂       

♂       

♂       
♂       

♀

♂       

♂       

♂       

Height100  200 (cm)

Cross-validation

(prediction to new sample)

Acc = 0.80

♀

♀
♀

♀
♀

♀
♀

♀

♀

♂       
♂       ♂       

♂       
♂       

♂       
♂       

♀

♂       

♂       

♂       



“

Why do we want (need) to 
do cross-validation?



“

Model fit ≠ good prediction



Overfitting

◉ When your fit on your train-set is better than 
on your test-set, you're overfitting 

◉ Overfitting means you're modelling noise 
instead of signal



R2 = 0.98

Height

100             200 (cm)

Overfitting

Height

100             200 (cm)

True model

100             200 (cm)

True model + noise

Height

100             200 (cm)

R2 = 0.24

New sample(over)Fitted model

R2 = 0.98

>
Overfitting

Height



Overfitting

◉ Overfitting = modeling noise

◉ Noise = random (uncorrelated from sample to 
sample)

◉ Therefore, a model based on noise will not 
generalize



What causes overfitting?

◉ A small sample/feature-ratio often causes 
overfitting

◉ When there are few samples or many 
features, models may fit on random/accidental 
relationships



What causes overfitting?

◉ When there are few samples, models may fit 
on random/accidental relationships

"Hmm, shirt color 
 seems an excellent 
 feature to use!"



What causes overfitting?

◉ When there are few samples, models may fit 
on random/accidental relationships

"Ah, gotta find 
 another feature 
 than shirt color ..."



What causes overfitting?

◉ Two options:

○ Gather more data (not always feasible)

○ Reduce the amount of features (more about this later)

○ [Regularization - beyond the scope of this course!]

◉ Feature selection/extraction is an often-used 
technique in decoding analyses



Cross-decoding!

◉ Sometimes, decoding analyses use a specific 
form of cross-validation to perform 
cross-decoding

◉ In cross-decoding, you aim to show 
“informational overlap” between two type of 
representations



Cross-decoding!

◉ For example: suppose you have the hypothesis 
attractiveness drives the perception of friendliness

 1   2   …   k
    Voxels

X y

“Do you find him/her 
 attractive?”

“yes” (1) 
“no” (0) 
“yes” (1) 

“yes” (1) 

...

...

...

...
“Do you think he/she 
 is friendly?”

 1   2   …   k
    Voxels

X ... y
“no” (0) 
“yes” (1) 
“yes” (1) 

“no” (0) 

fit cross-validate

Model



Summary

◉ ML models find weights to approximate a continuous 
(regression) or categorical (classification) dependent variable 
(y)

◉ Good fit ≠ good generalization …

◉ … therefore, cross-validate the model!

◉ Optimize the sample/feature ratio to reduce overfitting 
(spurious feature-DV correlations)

◉ Cross-decoding uses cross-validation to uncover shared 
representations ('informational overlap')



PART 2: 
BUILDING A DECODING PIPELINE



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 
Week 1!



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 



Predict

Step 1: Partitioning 

◉ Hold-out CV

TRAIN (e.g. 75%) TEST (25%)

All data (N samples)

ML 
modelFit

Only cross-validate 
once!

Kind of a "waste" of 
data … Reuse data?



Step 1: Partitioning 

◉ K-fold CV, e.g. 4-fold

TRAIN (75%) TEST (25%)

All data (N samples)

Fold 1



Step 1: Partitioning 

◉ K-fold CV, e.g. 4-fold

TRAIN (75%) TEST (25%)Fold 2

All data (N samples)



Step 1: Partitioning 

◉ K-fold CV, e.g. 4-fold

TEST (25%)Fold 3 TRAIN (75%)

All data (N samples)



Step 1: Partitioning 

◉ K-fold CV, e.g. 4-fold

TEST (25%)Fold 4 TRAIN (75%)

All data (N samples)



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 



Feature selection

◉ Goal: high sample/feature ratio!

◉ MRI: often many features (voxels), few 
samples (trials/instances/subjects)

◉ What to do???



Feature selection vs. extraction

◉ Reducing the dimensionality of patterns:

○ Select a subset of features (feature selection)

○ Transform features in lower-dimensional 
components (feature extraction)



Feature selection vs. extraction

◉ Ideas for feature selection? 

○ ROI-based (e.g. only hippocampus);

○ (Independent!) functional mapper;

○ Data-driven selection: univariate feature selection



Feature selection vs. extraction

◉ Ideas for feature selection? 

○ ROI-based (e.g. only hippocampus);

○ (Independent!) functional mapper;

○ Data-driven selection: univariate feature selection



Univariate feature selection

◉ Use univariate difference scores (e.g. 
t-value/F-value) to select features

◉ Only select a subset of the voxels with the 
highest scores 



Univariate feature selection

   1    2     …    k
        Voxels

Sa
m

p
le

s
2.  Select only the "best" 
     100 voxels (or a 
     percentage)

Steps: 
1.   Calculate test-statistic 
     (t-test for difference happy/angry)

t-values
3.2  1.1 -2.4  0.4 



Cross-validation in FS

◉ Importantly, data-driven feature selection 
needs to be cross-validated!

○ Performed on train-set only!



Cross-validation in FS

Total dataset (all voxels, all trials)

Train-set
(all voxels, 50% trials)

test-set
(all voxels, 50% trials)

ModelFit (train) the model ... … and cross-validate on the test-set

Train-set
(subset voxels, 50% trials)

Reduce features ...

Test-set
(subset voxels, 50% trials)

… and apply subset to test-set



ToThink: 
Why do you need to cross-validate your 

feature selection?
 

Isn't cross-validating the model-fit enough? 



ToThink: 
Why do you need to cross-validate your 

feature selection?
 

Total dataset (all voxels, all trials)

Total dataset (subset voxels, all trials)

Train-set
(all voxels, 50% trials)

test-set
(all voxels, 50% trials)

Reduce features ...
Here, you are using 
"information" from the 
test-set already! 

Train & test-set are not 
independent anymore!



Feature selection vs. extraction

◉ Ideas for feature extraction? 

○ PCA

○ Averaging within regions ("downsampling")

~60,000 features (voxels) ~110 features (brain regions)



Feature selection vs. extraction

◉ Ideas for feature extraction? 

○ PCA

○ Averaging within regions ("downsampling")

◉ Feature extraction (often) does not need to be 
cross-validated



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 



Statistical test of performance

◉ Remember I said ML does not use any 
statistical tests for inference?

○ I lied.

◉ Decoding analyses do use significance tests to 
infer whether decoding performance (R2 or % 
accuracy) would generalize to the population



Statistical test of performance

◉ Remember, if you want to statistically test 
something, you need to have a null- and 
alternative hypothesis:

○ H
0
: performance = chance level

○ H
a
: performance > chance level 



Statistical test of performance

◉ What is chance level?

◉ R2?

○ Cross-validated R2 
null

: 0

◉ Accuracy?

○ 1 / number of classes

○ Decode negative/positive/neutral? Chance = 33%

y = {        ,            ,          }



Statistical test of performance

◉ Observed performance is measured as the 
average cross-validated performance (R2 / 
accuracy)

◉ Slightly different for within/between subject 
analyses:

○ Within: average performance across subjects

○ Between: average performance across folds



Statistics: within-subject

◉ Take e.g. a 3-fold cross-validation setup

...

1

2

N

90% 70% 65%

55% 45% 60%

90% 70% 65%

75% =

53% =

42% =

average58.5% =

Point-estimate 
of performance 

average(                                                      )

average(                                                      )

average(                                                      )

40     50      60      70
% accuracy

Observed 
performance



Statistics: within-subject

◉ H
a
: 58.5 > 50

◉ Subject-wise average performance estimates 
represent the data points

◉ Assuming independence between subjects, 
we can use simple parametric statistics

○ t-test(n-subjects - 1) of observed performance (i.e. 
58.5%) against the null performance (i.e. 50%) 



Statistics: between-subject

...
Fold 1 Fold 2 Fold 3 Fold 8

...1 2 3 7 8 9

average 50%65%82%41% ...
54.8% =

Observed 
performance

40     50      60      70
% accuracy



Statistics: between-subject

◉ H
a
: 54.8 > 50

◉ Fold-wise performance estimates represent data 
points

◉ Problem: different folds contain the same subjects

OVERLAP

Fold 1 Fold 8

...



Statistics: between-subject

◉ Problem: different folds contain the same subjects

OVERLAP

Fold 1 Fold 8

...

◉ Consequence: dependence between data points

○ Violates assumptions of many parametric statistical 
tests

◉ Solution: non-parametric (permutation) test



Statistics: between-subject

◉ Permutation tests do not assume (the shape 
of) a null-distribution, but "simulate" them

◉ To simulate the null-distribution (results 
expected when H

0
 is true), permutation tests 

literally simulate "performance at chance" 



Repeat 
1000 
times

Statistics: between-subject

A A A A B B B B A BCLASS  =

Randomly shuffle labels

...
B B B A B A A A A B

50% 45% 62%

B A B A B A B B B A A A A A B B B B A BA A A A B B B B A B A B A B B B A B A A

Permuted performance (averaged over folds):
52%



Perm.
1

Statistics: between-subject

41% 62% 51%

Permuted performance (averaged over folds):
48%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
2

Statistics: between-subject

51% 53% 49%

Permuted performance (averaged over folds):
52%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
3

Statistics: between-subject

62% 55% 53%

Permuted performance (averaged over folds):
57%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
4

Statistics: between-subject

51% 42% 47%

Permuted performance (averaged over folds):
48%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
5

Statistics: between-subject

49% 48% 53%

Permuted performance (averaged over folds):
50%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
6

Statistics: between-subject

41% 42% 49%

Permuted performance (averaged over folds):
45%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
...

Statistics: between-subject

46% 53% 48%

Permuted performance (averaged over folds):
48%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Perm.
1000

Statistics: between-subject

40% 39% 52%

Permuted performance (averaged over folds):
43%

...

40     50      60      70
% accuracy

Simulated null-
distribution!



Statistics: between-subject

"Non-parametric" p-value =

40                 50                  60                 70

% accuracy

58.4%

∑(null-scores > observed-scores)

Number of permutations1000

52
= 0.052



A typical decoding pipeline

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model generalization (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 

If there is 
time left!



Weight mapping

◉ Often, researchers (read: reviewers) ask:

  "Which features are important 
    for which class?"

◉ Intrinsic need for 
blobs?  

◉ What they want:



Weight mapping

◉ Technically, weights (β) in linear models are 
interpretable: higher = more important

○ Negative weights: evidence for class 0

○ Positive weights: evidence for class 1

ŷ = β
 1   2   …   k
    Voxels

Sa
m

p
le

sClass 0

Class 1



Weight mapping

◉ Technically, weights (β) in linear models are 
interpretable: higher = more important

○ Negative weights: evidence for class 0

○ Positive weights: evidence for class 1

ŷ = 
 1   2   …   k
    Voxels

Sa
m

p
le

sClass 0

Class 1

×1
2
…
k

Reshape to 3D

Apply threshold

Plot on brain

Angry (0)             Happy (1)
Evidence for class
❌



Weight mapping

◉ Haufe et al. (2014, NeuroImage) showed that 
high weights ≠ class importance

...

*voxels

*



Weight mapping

◉ Haufe et al. (2014, NeuroImage) showed that 
high weights ≠ class importance

◉ Features (voxels) may function like 
(class-independent) "filters"

○ E.g. reflect physiological noise

◉ Inherent problem for decoding analyses
(brain → world)



Weight mapping

◉ Solution: mathematical trick to convert a decoding 
model to an encoding model

○ Weights from encoding models are interpretable

◉ Activation patterns = (X'X)β

◉ But: very similar to traditional activation-based 
analysis …

◉ Conclusion: (like always) choose the analysis best 
suited for your question!



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 
Estimate and extract patterns 
such that X = N-samples by 
N-features (voxels)



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 
Use hold-out or K-fold 
partitioning



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 

Reduce the amount of features

Feature selection 
(voxel subset

Feature extraction 
(voxels → components)



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 

TRAIN (e.g. 75%) TEST (25%)

ML 
model

Fit



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 

TRAIN (e.g. 75%)

Predict

TEST (25%)

ML 
model

Fit



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 

40     50      60      70
% accuracy

Parametric test 
against chance 
(within-subject)

Permutation test against simulated 
null (between- subject)



Summary

1. Partitioning train/test
2. Feature selection/extraction
3. Model fitting (TRAIN)
4. Model prediction (TEST)
5. Statistical test of performance
6. Optional: plot weights

0. Pattern extraction & preparation 

Do not plot weights! A 
(complementary) univariate 
analysis would suffice

If you insist, plot the 
corresponding encoding 
model - (X'X)β



Literature

◉ Abraham et al: about the scikit-learn package 
for decoding analyses (read before tomorrow 
if possible!)

◉ Pereira et al: tutorial-style paper about 
decoding analyses


