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Introduction What'’s going on?

Due to random
sampling, it may be
that:

p (Xtrain’ train) >0

but, because
p(Xfull’ full) =0

often:

p(Xtest’ test) <0

« Contrary to mass-univariate analyses, where Let’s simplify the After regressing out ¢
confounds are often controlled for, it is Brain size problem and suppose  from X, correlation
unclear how to handle confounds in MVPA!? = ¢; thus: p(y, c) =1

o This poses a serious threat to the
generalizability of MVPA results in both
clinical and fundamental research - especially
because MVPA is arguably more sensitive to
confounds’

o Here, we show how a previously proposed’
method of dealing with confounds (“confound

regression’) leads to bias and causes below- Y
chance accuracy”

e« We introduce a universal and unbiased VBM/TBSS Gender
method of dealing with confounds in MVPA
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confound, y Simulations® show how the strength of the bias
o1 depends on:
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, P Number of independent variables
What’s the problem? . y
Following the example to predict from VBM and TBSS-data (X) in the face of the p N N
“confound” brain size (c)... : .
Solution Conclusion
We know that brain size truly confounds 50, P(X, V) ncorrectea 18 Diased... The problem can easily be solved by regressing out o Confound regression introduces
p(C, ¥).. i, ¢ from X within each fold! In simulations without a bias in cross-validated MVPA
I 2 A I\/Iodallty 1 t. X . 1- 4 . 11 h
i g _— u ® von correlation p(X, y)... pipelines®, especially when many
I o === e 0 voxels are used
: | | 8 0.6 : p(confound, y) . .
: | | () TTmTTmTmmm TS mmmmmsmmmssmmmesommesee L0 0.1 « Regressing out confounds foldwise
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: . o ® u is a universal and easy method,
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| .00 @ o improving the generalizability of
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...and is related to our data... Yet, p(X, y)__ . <chance (50%) ..and in our empirical example, where there is a 9 p
modality = VBM modality = TBSS > Modality relation’ p(X’ )corrected foldwise 4 )
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